These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27025348)

  • 1. Revealing the role of molecular rigidity on the fragility evolution of glass-forming liquids.
    Yildirim C; Raty JY; Micoulaut M
    Nat Commun; 2016 Mar; 7():11086. PubMed ID: 27025348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour.
    Bauchy M; Micoulaut M
    Nat Commun; 2015 Mar; 6():6398. PubMed ID: 25751003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of fragility of supercooled liquids with elastic properties of glasses.
    Novikov VN; Ding Y; Sokolov AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061501. PubMed ID: 16089737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft colloids make strong glasses.
    Mattsson J; Wyss HM; Fernandez-Nieves A; Miyazaki K; Hu Z; Reichman DR; Weitz DA
    Nature; 2009 Nov; 462(7269):83-6. PubMed ID: 19890327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids.
    Wang T; Gulbiten O; Wang R; Yang Z; Smith A; Luther-Davies B; Lucas P
    J Phys Chem B; 2014 Feb; 118(5):1436-42. PubMed ID: 24450864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids.
    Sun Q; Zhou C; Yue Y; Hu L
    J Phys Chem Lett; 2014 Apr; 5(7):1170-4. PubMed ID: 26274466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.
    Micoulaut M
    J Phys Condens Matter; 2010 Jul; 22(28):285101. PubMed ID: 21399290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Fragility in Organic Small Molecular Glass Forming Liquids: Comparison of Calorimetric and Spectroscopic Data and Commentary on Pharmaceutical Importance.
    Chakravarty P; Pandya K; Nagapudi K
    Mol Pharm; 2018 Mar; 15(3):1248-1257. PubMed ID: 29384682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids.
    Hu YC; Li FX; Li MZ; Bai HY; Wang WH
    Nat Commun; 2015 Sep; 6():8310. PubMed ID: 26387592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why glass elasticity affects the thermodynamics and fragility of supercooled liquids.
    Yan L; Düring G; Wyart M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6307-12. PubMed ID: 23576746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoupling of diffusion from structural relaxation and spatial heterogeneity in a supercooled simple liquid.
    Dzugutov M; Simdyankin SI; Zetterling FH
    Phys Rev Lett; 2002 Nov; 89(19):195701. PubMed ID: 12443128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers.
    Novikov VN; Sokolov AP
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercooled liquids and the glass transition.
    Debenedetti PG; Stillinger FH
    Nature; 2001 Mar; 410(6825):259-67. PubMed ID: 11258381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of glasses from liquids and biopolymers.
    Angell CA
    Science; 1995 Mar; 267(5206):1924-35. PubMed ID: 17770101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between glass-forming ability and fragility of pharmaceutical compounds.
    Kawakami K; Harada T; Yoshihashi Y; Yonemochi E; Terada K; Moriyama H
    J Phys Chem B; 2015 Apr; 119(14):4873-80. PubMed ID: 25781503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for Anomalous Dynamic Heterogeneities in Isostatic Supercooled Liquids.
    Micoulaut M; Bauchy M
    Phys Rev Lett; 2017 Apr; 118(14):145502. PubMed ID: 28430466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Changes in Metallic Glass-Forming Liquids on Cooling and Subsequent Vitrification in Relationship with Their Properties.
    Louzguine-Luzgin DV
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure effects on structure and dynamics of metallic glass-forming liquid.
    Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH
    J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Glass Transition and Structural Relaxation on Crystal Nucleation: Theoretical Description and Model Analysis.
    Schmelzer JWP; Tropin TV; Fokin VM; Abyzov AS; Zanotto ED
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation of the fragility and heat capacity jump in the supercooled liquid region with the shear modulus relaxation in metallic glasses.
    Makarov AS; Qiao JC; Kobelev NP; Aronin AS; Khonik VA
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33910186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.