These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27025377)

  • 1. Prediction of hybrid performance in maize with a ridge regression model employed to DNA markers and mRNA transcription profiles.
    Zenke-Philippi C; Thiemann A; Seifert F; Schrag T; Melchinger AE; Scholten S; Frisch M
    BMC Genomics; 2016 Mar; 17():262. PubMed ID: 27025377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize.
    Frisch M; Thiemann A; Fu J; Schrag TA; Scholten S; Melchinger AE
    Theor Appl Genet; 2010 Jan; 120(2):441-50. PubMed ID: 19911157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL.
    Schrag TA; Melchinger AE; Sørensen AP; Frisch M
    Theor Appl Genet; 2006 Oct; 113(6):1037-47. PubMed ID: 16896712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.
    Technow F; Schrag TA; Schipprack W; Bauer E; Simianer H; Melchinger AE
    Genetics; 2014 Aug; 197(4):1343-55. PubMed ID: 24850820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial least squares regression, support vector machine regression, and transcriptome-based distances for prediction of maize hybrid performance with gene expression data.
    Fu J; Falke KC; Thiemann A; Schrag TA; Melchinger AE; Scholten S; Frisch M
    Theor Appl Genet; 2012 Mar; 124(5):825-33. PubMed ID: 22101908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small RNA-based prediction of hybrid performance in maize.
    Seifert F; Thiemann A; Schrag TA; Rybka D; Melchinger AE; Frisch M; Scholten S
    BMC Genomics; 2018 May; 19(1):371. PubMed ID: 29783940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of maize single-cross hybrid performance: support vector machine regression versus best linear prediction.
    Maenhout S; De Baets B; Haesaert G
    Theor Appl Genet; 2010 Jan; 120(2):415-27. PubMed ID: 19904522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses.
    Schrag TA; Möhring J; Maurer HP; Dhillon BS; Melchinger AE; Piepho HP; Sørensen AP; Frisch M
    Theor Appl Genet; 2009 Feb; 118(4):741-51. PubMed ID: 19048224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic diversity in elite inbred lines of maize and its association with heterosis.
    Fernandes EH; Schuster I; Scapim CA; Vieira ES; Coan MM
    Genet Mol Res; 2015 Jun; 14(2):6509-17. PubMed ID: 26125855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield.
    Schrag TA; Maurer HP; Melchinger AE; Piepho HP; Peleman J; Frisch M
    Theor Appl Genet; 2007 May; 114(8):1345-55. PubMed ID: 17323040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Predictive potential of DNA markers in heterosis breeding of maize].
    Kozhukhova NE; Varenik BF; Sivolap IuM
    Tsitol Genet; 2005; 39(1):14-20. PubMed ID: 16018173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential use of molecular markers for prediction of genotypic values in hybrid maize performance.
    Balestre M; Von Pinho RG; Souza JC; Oliveira RL
    Genet Mol Res; 2009 Oct; 8(4):1292-306. PubMed ID: 19876871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds.
    Schrag TA; Möhring J; Melchinger AE; Kusterer B; Dhillon BS; Piepho HP; Frisch M
    Theor Appl Genet; 2010 Jan; 120(2):451-61. PubMed ID: 19916002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenomic prediction of maize hybrids.
    Edlich-Muth C; Muraya MM; Altmann T; Selbig J
    Biosystems; 2016 Aug; 146():102-9. PubMed ID: 27212062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize.
    Xu SX; Liu J; Liu GS
    Hereditas; 2004; 141(3):207-15. PubMed ID: 15703037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond Genomic Prediction: Combining Different Types of
    Schrag TA; Westhues M; Schipprack W; Seifert F; Thiemann A; Scholten S; Melchinger AE
    Genetics; 2018 Apr; 208(4):1373-1385. PubMed ID: 29363551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L.
    Thiemann A; Fu J; Schrag TA; Melchinger AE; Frisch M; Scholten S
    Theor Appl Genet; 2010 Jan; 120(2):401-13. PubMed ID: 19888564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic breeding value prediction for simple maize hybrid yield using total effects of associated markers, under different imbalance levels and environments.
    Cantelmo NF; Von Pinho RG; Balestre M
    Genet Mol Res; 2016 Mar; 15(1):15017232. PubMed ID: 26985952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture.
    Werner CR; Qian L; Voss-Fels KP; Abbadi A; Leckband G; Frisch M; Snowdon RJ
    Theor Appl Genet; 2018 Feb; 131(2):299-317. PubMed ID: 29080901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.