BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27025525)

  • 1. Identification of a Fragment-Based Scaffold that Inhibits the Glycosyltransferase WaaG from Escherichia coli.
    Muheim C; Bakali A; Engström O; Wieslander Å; Daley DO; Widmalm G
    Antibiotics (Basel); 2016 Jan; 5(1):. PubMed ID: 27025525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecules containing hetero-bicyclic ring systems compete with UDP-Glc for binding to WaaG glycosyltransferase.
    Landström J; Persson K; Rademacher C; Lundborg M; Wakarchuk W; Peters T; Widmalm G
    Glycoconj J; 2012 Oct; 29(7):491-502. PubMed ID: 22711644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid- and substrate-induced conformational and dynamic changes in a glycosyltransferase involved in E. coli LPS synthesis revealed by
    Patrick J; Pettersson P; Mäler L
    Biochim Biophys Acta Biomembr; 2023 Dec; 1865(8):184209. PubMed ID: 37558175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Interaction of the Glycosyltransferase WaaG.
    Liebau J; Pettersson P; Szpryngiel S; Mäler L
    Biophys J; 2015 Aug; 109(3):552-63. PubMed ID: 26244737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lead-Based Fragment Library Screening of the Glycosyltransferase WaaG from
    Riu F; Ruda A; Engström O; Muheim C; Mobarak H; Ståhle J; Kosma P; Carta A; Daley DO; Widmalm G
    Pharmaceuticals (Basel); 2022 Feb; 15(2):. PubMed ID: 35215321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional insights into the Pseudomonas aeruginosa glycosyltransferase WaaG and the implications for lipopolysaccharide biosynthesis.
    Scaletti ER; Pettersson P; Patrick J; Shilling PJ; Westergren RG; Daley DO; Mäler L; Widmalm G; Stenmark P
    J Biol Chem; 2023 Oct; 299(10):105256. PubMed ID: 37716703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the membrane association mechanism of the glycosyltransferase WaaG from Escherichia coli.
    Liebau J; Fu B; Brown C; Mäler L
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):683-690. PubMed ID: 29225173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation.
    Yethon JA; Vinogradov E; Perry MB; Whitfield C
    J Bacteriol; 2000 Oct; 182(19):5620-3. PubMed ID: 10986272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assembly of the outer core of the lipopolysaccharide from Escherichia coli K-12 and Salmonella typhimurium.
    Qian J; Garrett TA; Raetz CR
    Biochemistry; 2014 Mar; 53(8):1250-62. PubMed ID: 24479701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Screening of a Promoter Library Reveals New Persister Mechanisms in Escherichia Coli.
    Mohiuddin SG; Massahi A; Orman MA
    Microbiol Spectr; 2022 Feb; 10(1):e0225321. PubMed ID: 35196813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Outer Membrane Proteins and Lipopolysaccharides for the Sensitivity of
    Ebbensgaard A; Mordhorst H; Aarestrup FM; Hansen EB
    Front Microbiol; 2018; 9():2153. PubMed ID: 30245684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Molecular and Genetic Basis of Repeatable Coevolution between Escherichia coli and Bacteriophage T3 in a Laboratory Microcosm.
    Perry EB; Barrick JE; Bohannan BJ
    PLoS One; 2015; 10(6):e0130639. PubMed ID: 26114300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and targeted disruption of two lipopolysaccharide biosynthesis genes, kdsA and waaG, of Pseudomonas aeruginosa PAO1 by site-directed mutagenesis.
    Perumal D; Sakharkar KR; Tang TH; Chow VT; Lim CS; Samal A; Sugiura N; Sakharkar MK
    J Mol Microbiol Biotechnol; 2010; 19(4):169-79. PubMed ID: 21042030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo and in Vitro Synthesis of Phosphatidylglycerol by an Escherichia coli Cardiolipin Synthase.
    Li C; Tan BK; Zhao J; Guan Z
    J Biol Chem; 2016 Nov; 291(48):25144-25153. PubMed ID: 27760827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosyltransferases involved in biosynthesis of the outer core region of Escherichia coli lipopolysaccharides exhibit broader substrate specificities than is predicted from lipopolysaccharide structures.
    Leipold MD; Vinogradov E; Whitfield C
    J Biol Chem; 2007 Sep; 282(37):26786-26792. PubMed ID: 17631498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose.
    Anriany Y; Sahu SN; Wessels KR; McCann LM; Joseph SW
    Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriophage-Induced Lipopolysaccharide Mutations in
    Zhong Z; Emond-Rheault JG; Bhandare S; Lévesque R; Goodridge L
    Antibiotics (Basel); 2020 Aug; 9(9):. PubMed ID: 32872188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs.
    Jackman JE; Fierke CA; Tumey LN; Pirrung M; Uchiyama T; Tahir SH; Hindsgaul O; Raetz CR
    J Biol Chem; 2000 Apr; 275(15):11002-9. PubMed ID: 10753902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot biosynthesis of gastrodin using UDP-glycosyltransferase itUGT2 with an in situ UDP-glucose recycling system.
    Cui C; Yan J; Liu Y; Zhang Z; Su Q; Kong M; Zhou C; Ming H
    Enzyme Microb Technol; 2023 May; 166():110226. PubMed ID: 36913860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UDPglucose-ceramide glucosyltransferase from porcine submaxillary glands is associated with the Golgi apparatus.
    Coste H; Martel MB; Azzar G; Got R
    Biochim Biophys Acta; 1985 Mar; 814(1):1-7. PubMed ID: 3156635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.