These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27025561)

  • 21. Effects of Trimethylamine-N-oxide on the Conformation of Peptides and its Implications for Proteins.
    Su Z; Mahmoudinobar F; Dias CL
    Phys Rev Lett; 2017 Sep; 119(10):108102. PubMed ID: 28949191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme.
    Panuszko A; Bruździak P; Zielkiewicz J; Wyrzykowski D; Stangret J
    J Phys Chem B; 2009 Nov; 113(44):14797-809. PubMed ID: 19813739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvation Dynamics of Trimethylamine N-Oxide in Aqueous Solution Probed by Terahertz Spectroscopy.
    Knake L; Schwaab G; Kartaschew K; Havenith M
    J Phys Chem B; 2015 Oct; 119(43):13842-51. PubMed ID: 26214376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Distinct Proof on Interplay between Trehalose and Guanidinium Chloride for the Stability of Stem Bromelain.
    Rani A; Venkatesu P
    J Phys Chem B; 2016 Sep; 120(34):8863-72. PubMed ID: 27463034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Destabilization of the hydrogen-bond structure of water by the osmolyte trimethylamine N-oxide.
    Rezus YL; Bakker HJ
    J Phys Chem B; 2009 Apr; 113(13):4038-44. PubMed ID: 19425246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microscopic stability of cold shock protein A examined by NMR native state hydrogen exchange as a function of urea and trimethylamine N-oxide.
    Jaravine VA; Rathgeb-Szabo K; Alexandrescu AT
    Protein Sci; 2000 Feb; 9(2):290-301. PubMed ID: 10716181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does macromolecular crowding compatible with enzyme stem bromelain structure and stability?
    Bhakuni K; Venkatesu P
    Int J Biol Macromol; 2019 Jun; 131():527-535. PubMed ID: 30880059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembly of TMAO at hydrophobic interfaces and its effect on protein adsorption: insights from experiments and simulations.
    Anand G; Jamadagni SN; Garde S; Belfort G
    Langmuir; 2010 Jun; 26(12):9695-702. PubMed ID: 20334401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The protein-stabilizing effects of TMAO in aqueous and non-aqueous conditions.
    Monhemi H; Hoang HN; Standley DM; Matsuda T; Housaindokht MR
    Phys Chem Chem Phys; 2022 Sep; 24(35):21178-21187. PubMed ID: 36039911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of trimethylamine N-oxide (TMAO) and crowding agents on the stability of RNA hairpins.
    Pincus DL; Hyeon C; Thirumalai D
    J Am Chem Soc; 2008 Jun; 130(23):7364-72. PubMed ID: 18479134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A natural osmolyte trimethylamine N-oxide promotes assembly and bundling of the bacterial cell division protein, FtsZ and counteracts the denaturing effects of urea.
    Mukherjee A; Santra MK; Beuria TK; Panda D
    FEBS J; 2005 Jun; 272(11):2760-72. PubMed ID: 15943810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water-mediated interactions between trimethylamine-N-oxide and urea.
    Hunger J; Ottosson N; Mazur K; Bonn M; Bakker HJ
    Phys Chem Chem Phys; 2015 Jan; 17(1):298-306. PubMed ID: 25138965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the molecular mechanism of trimethylamine-N-oxide's ability to counteract the protein denaturing effects of urea.
    Sarma R; Paul S
    J Phys Chem B; 2013 May; 117(18):5691-704. PubMed ID: 23586614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model Dependency of TMAO's Counteracting Effect Against Action of Urea: Kast Model versus Osmotic Model of TMAO.
    Borgohain G; Paul S
    J Phys Chem B; 2016 Mar; 120(9):2352-61. PubMed ID: 26876571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Am Chem Soc; 2007 Apr; 129(14):4476-82. PubMed ID: 17373796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal inactivation of uricase (urate oxidase): mechanism and effects of additives.
    Caves MS; Derham BK; Jezek J; Freedman RB
    Biochemistry; 2013 Jan; 52(3):497-507. PubMed ID: 23237426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of the osmolyte trimethylamine N-oxide on the stability of the prion protein at low pH.
    Granata V; Palladino P; Tizzano B; Negro A; Berisio R; Zagari A
    Biopolymers; 2006 Jun; 82(3):234-40. PubMed ID: 16489585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preventing misfolding of the prion protein by trimethylamine N-oxide.
    Bennion BJ; DeMarco ML; Daggett V
    Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osmolyte trimethylamine N-oxide converts recombinant alpha-helical prion protein to its soluble beta-structured form at high temperature.
    Nandi PK; Bera A; Sizaret PY
    J Mol Biol; 2006 Sep; 362(4):810-20. PubMed ID: 16949096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into the molecular mechanisms of protein stabilizing osmolytes from global force-field variations.
    Schneck E; Horinek D; Netz RR
    J Phys Chem B; 2013 Jul; 117(28):8310-21. PubMed ID: 23822090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.