BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27025571)

  • 1. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering.
    Voigt F; Wiedemann L; Zuliani C; Querques I; Sebe A; Mátés L; Izsvák Z; Ivics Z; Barabas O
    Nat Commun; 2016 Mar; 7():11126. PubMed ID: 27025571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR structural analysis of Sleeping Beauty transposase binding to DNA.
    Carpentier CE; Schreifels JM; Aronovich EL; Carlson DF; Hackett PB; Nesmelova IV
    Protein Sci; 2014 Jan; 23(1):23-33. PubMed ID: 24243759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells.
    Yant SR; Park J; Huang Y; Mikkelsen JG; Kay MA
    Mol Cell Biol; 2004 Oct; 24(20):9239-47. PubMed ID: 15456893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rigidity and flexibility characteristics of DD[E/D]-transposases Mos1 and Sleeping Beauty.
    Singer CM; Joy D; Jacobs DJ; Nesmelova IV
    Proteins; 2019 Apr; 87(4):313-325. PubMed ID: 30582767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jumping Ahead with
    Ochmann MT; Ivics Z
    Viruses; 2021 Jan; 13(1):. PubMed ID: 33429848
    [No Abstract]   [Full Text] [Related]  

  • 6. Development of hyperactive sleeping beauty transposon vectors by mutational analysis.
    Zayed H; Izsvák Z; Walisko O; Ivics Z
    Mol Ther; 2004 Feb; 9(2):292-304. PubMed ID: 14759813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bend, flip and trap mechanism for transposon integration.
    Morris ER; Grey H; McKenzie G; Jones AC; Richardson JM
    Elife; 2016 May; 5():. PubMed ID: 27223327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The folding of the specific DNA recognition subdomain of the sleeping beauty transposase is temperature-dependent and is required for its binding to the transposon DNA.
    Leighton GO; Konnova TA; Idiyatullin B; Hurr SH; Zuev YF; Nesmelova IV
    PLoS One; 2014; 9(11):e112114. PubMed ID: 25375127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleeping Beauty Transposition.
    Ivics Z; Izsvák Z
    Microbiol Spectr; 2015 Apr; 3(2):MDNA3-0042-2014. PubMed ID: 26104705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering.
    Rasila TS; Pulkkinen E; Kiljunen S; Haapa-Paananen S; Pajunen MI; Salminen A; Paulin L; Vihinen M; Rice PA; Savilahti H
    Nucleic Acids Res; 2018 May; 46(9):4649-4661. PubMed ID: 29294068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Determinants of Sleeping Beauty Transposase Activity.
    Abrusán G; Yant SR; Szilágyi A; Marsh JA; Mátés L; Izsvák Z; Barabás O; Ivics Z
    Mol Ther; 2016 Aug; 24(8):1369-77. PubMed ID: 27401040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells.
    Ivics Z; Hackett PB; Plasterk RH; Izsvák Z
    Cell; 1997 Nov; 91(4):501-10. PubMed ID: 9390559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer Gene Discovery Utilizing Sleeping Beauty Transposon Mutagenesis.
    Becklin KL; Smeester BA; Moriarity BS
    Methods Mol Biol; 2019; 1907():161-170. PubMed ID: 30542999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered Sleeping Beauty transposase redirects transposon integration away from genes.
    Miskey C; Kesselring L; Querques I; Abrusán G; Barabas O; Ivics Z
    Nucleic Acids Res; 2022 Mar; 50(5):2807-2825. PubMed ID: 35188569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications.
    Amberger M; Ivics Z
    Bioessays; 2020 Nov; 42(11):e2000136. PubMed ID: 32939778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition.
    Wang Y; Pryputniewicz-Dobrinska D; Nagy EÉ; Kaufman CD; Singh M; Yant S; Wang J; Dalda A; Kay MA; Ivics Z; Izsvák Z
    Nucleic Acids Res; 2017 Jan; 45(1):311-326. PubMed ID: 27913727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30.
    Mahmoudian RA; Fathi F; Farshchian M; Abbaszadegan MR
    Mol Biotechnol; 2023 Mar; 65(3):350-360. PubMed ID: 35474410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural role of the flanking DNA in mariner transposon excision.
    Dornan J; Grey H; Richardson JM
    Nucleic Acids Res; 2015 Feb; 43(4):2424-32. PubMed ID: 25662605
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Kovač A; Miskey C; Ivics Z
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote.
    Richardson JM; Colloms SD; Finnegan DJ; Walkinshaw MD
    Cell; 2009 Sep; 138(6):1096-108. PubMed ID: 19766564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.