BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 27025615)

  • 1. NETs and CF Lung Disease: Current Status and Future Prospects.
    Gray RD; McCullagh BN; McCray PB
    Antibiotics (Basel); 2015 Jan; 4(1):62-75. PubMed ID: 27025615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation.
    Khan MA; Ali ZS; Sweezey N; Grasemann H; Palaniyar N
    Genes (Basel); 2019 Feb; 10(3):. PubMed ID: 30813645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review.
    Law SM; Gray RD
    J Inflamm (Lond); 2017; 14():29. PubMed ID: 29299029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in Cystic Fibrosis.
    Martínez-Alemán SR; Campos-García L; Palma-Nicolas JP; Hernández-Bello R; González GM; Sánchez-González A
    Front Cell Infect Microbiol; 2017; 7():104. PubMed ID: 28428948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutrophil extracellular traps are present in the airways of ENaC-overexpressing mice with cystic fibrosis-like lung disease.
    Tucker SL; Sarr D; Rada B
    BMC Immunol; 2021 Jan; 22(1):7. PubMed ID: 33478382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by
    Marteyn BS; Burgel PR; Meijer L; Witko-Sarsat V
    Front Cell Infect Microbiol; 2017; 7():243. PubMed ID: 28713772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum anti-PAD4 autoantibodies are present in cystic fibrosis children and increase with age and lung disease severity.
    Linnemann RW; Yadav R; Zhang C; Sarr D; Rada B; Stecenko AA
    Autoimmunity; 2022 Mar; 55(2):109-117. PubMed ID: 35199621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum.
    Dubois AV; Gauthier A; Bréa D; Varaigne F; Diot P; Gauthier F; Attucci S
    Am J Respir Cell Mol Biol; 2012 Jul; 47(1):80-6. PubMed ID: 22343221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.
    Yoo DG; Floyd M; Winn M; Moskowitz SM; Rada B
    Immunol Lett; 2014 Aug; 160(2):186-94. PubMed ID: 24670966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis.
    Gray RD; Hardisty G; Regan KH; Smith M; Robb CT; Duffin R; Mackellar A; Felton JM; Paemka L; McCullagh BN; Lucas CD; Dorward DA; McKone EF; Cooke G; Donnelly SC; Singh PK; Stoltz DA; Haslett C; McCray PB; Whyte MKB; Rossi AG; Davidson DJ
    Thorax; 2018 Feb; 73(2):134-144. PubMed ID: 28916704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering
    Boboltz A; Yang S; Duncan GA
    J Mater Chem B; 2023 Oct; 11(39):9419-9430. PubMed ID: 37701932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas aeruginosa isolates from cystic fibrosis patients induce neutrophil extracellular traps with different morphologies that could correlate with their disease severity.
    Martínez-Alemán S; Bustamante AE; Jimenez-Valdes RJ; González GM; Sánchez-González A
    Int J Med Microbiol; 2020 Oct; 310(7):151451. PubMed ID: 33092695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering
    Boboltz AM; Yang S; Duncan GA
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteases and cystic fibrosis.
    Voynow JA; Fischer BM; Zheng S
    Int J Biochem Cell Biol; 2008; 40(6-7):1238-45. PubMed ID: 18395488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NET balancing: a problem in inflammatory lung diseases.
    Cheng OZ; Palaniyar N
    Front Immunol; 2013; 4():1. PubMed ID: 23355837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis.
    Rada B
    Pathogens; 2017 Mar; 6(1):. PubMed ID: 28282951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free DNA in cystic fibrosis airway fluids correlates with airflow obstruction.
    Marcos V; Zhou-Suckow Z; Önder Yildirim A; Bohla A; Hector A; Vitkov L; Krautgartner WD; Stoiber W; Griese M; Eickelberg O; Mall MA; Hartl D
    Mediators Inflamm; 2015; 2015():408935. PubMed ID: 25918476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophil extracellular trap release driven by bacterial motility: Relevance to cystic fibrosis lung disease.
    Rada B
    Commun Integr Biol; 2017; 10(2):e1296610. PubMed ID: 28451056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis.
    Margraf S; Lögters T; Reipen J; Altrichter J; Scholz M; Windolf J
    Shock; 2008 Oct; 30(4):352-8. PubMed ID: 18317404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy.
    Manzenreiter R; Kienberger F; Marcos V; Schilcher K; Krautgartner WD; Obermayer A; Huml M; Stoiber W; Hector A; Griese M; Hannig M; Studnicka M; Vitkov L; Hartl D
    J Cyst Fibros; 2012 Mar; 11(2):84-92. PubMed ID: 21996135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.