These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 27025647)
1. Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Song F; Chen C; Wu S; Shao E; Li M; Guan X; Huang Z Sci Rep; 2016 Mar; 6():23861. PubMed ID: 27025647 [TBL] [Abstract][Full Text] [Related]
2. Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Song F; Lin Y; Chen C; Shao E; Guan X; Huang Z J Microbiol Biotechnol; 2016 Oct; 26(10):1774-1780. PubMed ID: 27435544 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive analysis of gene expression profiles of the beet armyworm Spodoptera exigua larvae challenged with Bacillus thuringiensis Vip3Aa toxin. Bel Y; Jakubowska AK; Costa J; Herrero S; Escriche B PLoS One; 2013; 8(12):e81927. PubMed ID: 24312604 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling analysis of the intoxication response in midgut tissue of Agrotis ipsilon larvae to Bacillus thuringiensis Vip3Aa protoxin. Zhang J; Li H; Tan J; Wei P; Yu S; Liu R; Gao J Pestic Biochem Physiol; 2019 Oct; 160():20-29. PubMed ID: 31519254 [TBL] [Abstract][Full Text] [Related]
5. Proteotranscriptomic analyses of the midgut and Malpighian tubules after a sublethal concentration of Cry1Ab exposure on Spodoptera litura. Xu YJ; Zhang YN; Xue-Yang ; Hao SP; Wang YJ; Yang XX; Shen YQ; Su Q; Xiao YD; Liu JQ; Li WS; He QH; Chen Y; Wang LL; Guo HZ; Xia QY; Mita K Pest Manag Sci; 2024 Jun; 80(6):2587-2595. PubMed ID: 38265118 [TBL] [Abstract][Full Text] [Related]
6. Homologs to Cry toxin receptor genes in a de novo transcriptome and their altered expression in resistant Spodoptera litura larvae. Gong L; Wang H; Qi J; Han L; Hu M; Jurat-Fuentes JL J Invertebr Pathol; 2015 Jul; 129():1-6. PubMed ID: 25981133 [TBL] [Abstract][Full Text] [Related]
7. Oligomer Formation and Insecticidal Activity of Shao E; Zhang A; Yan Y; Wang Y; Jia X; Sha L; Guan X; Wang P; Huang Z Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32340293 [No Abstract] [Full Text] [Related]
8. Antagonistic Effect of Truncated Fragments of Boonyos P; Trakulnalueamsai C; Rungrod A; Chongthammakun S; Promdonkoy B Protein Pept Lett; 2021; 28(2):131-139. PubMed ID: 32586243 [TBL] [Abstract][Full Text] [Related]
9. An Integrative Analysis of Transcriptomics and Proteomics Reveals Novel Insights into the Response in the Midgut of Jin M; Shan Y; Peng Y; Wang P; Li Q; Yu S; Zhang L; Xiao Y Toxins (Basel); 2022 Jan; 14(1):. PubMed ID: 35051032 [TBL] [Abstract][Full Text] [Related]
10. Proteolytic activation of Bacillus thuringiensis Vip3Aa protein by Spodoptera exigua midgut protease. Zhang J; Pan ZZ; Xu L; Liu B; Chen Z; Li J; Niu LY; Zhu YJ; Chen QX Int J Biol Macromol; 2018 Feb; 107(Pt A):1220-1226. PubMed ID: 28970168 [TBL] [Abstract][Full Text] [Related]
11. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. Caccia S; Chakroun M; Vinokurov K; Ferré J J Insect Physiol; 2014 Aug; 67():76-84. PubMed ID: 24979528 [TBL] [Abstract][Full Text] [Related]
12. Removal of an Aminopeptidase N From Midgut Brush Border Does Not Affect Susceptibility of Spodoptera litura (Lepidoptera: Noctuidae) Larvae to Four Insecticidal Proteins of Bacillus thuringiensis (Bacillales: Bacillaceae). Wang C; Deng Z; Yuan J; Xu K; Sha L; Guan X; Huang Z; Shao E J Econ Entomol; 2023 Feb; 116(1):223-232. PubMed ID: 36421056 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis. Canton PE; Cancino-Rodezno A; Gill SS; Soberón M; Bravo A BMC Genomics; 2015 Dec; 16():1042. PubMed ID: 26645277 [TBL] [Abstract][Full Text] [Related]
14. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua. Lu K; Gu Y; Liu X; Lin Y; Yu XQ J Agric Food Chem; 2017 Mar; 65(10):2048-2055. PubMed ID: 28231709 [TBL] [Abstract][Full Text] [Related]
15. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). Bergamasco VB; Mendes DR; Fernandes OA; Desidério JA; Lemos MV J Invertebr Pathol; 2013 Feb; 112(2):152-8. PubMed ID: 23220241 [TBL] [Abstract][Full Text] [Related]
16. Nuclear factor erythroid-derived 2-related factor 2 activates glutathione S-transferase expression in the midgut of Spodoptera litura (Lepidoptera: Noctuidae) in response to phytochemicals and insecticides. Chen S; Lu M; Zhang N; Zou X; Mo M; Zheng S Insect Mol Biol; 2018 Aug; 27(4):522-532. PubMed ID: 29749087 [TBL] [Abstract][Full Text] [Related]
17. Identification of transcriptome and fluralaner responsive genes in the common cutworm Spodoptera litura Fabricius, based on RNA-seq. Jia ZQ; Liu D; Peng YC; Han ZJ; Zhao CQ; Tang T BMC Genomics; 2020 Feb; 21(1):120. PubMed ID: 32013879 [TBL] [Abstract][Full Text] [Related]
18. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. Crava CM; Jakubowska AK; Escriche B; Herrero S; Bel Y PLoS One; 2015; 10(5):e0125991. PubMed ID: 25993013 [TBL] [Abstract][Full Text] [Related]
19. A sperm-activating trypsin-like protease from the male reproductive tract of Spodoptera litura: Proteomic identification, sequence characterization, gene expression profile, RNAi and the effects of ionizing radiation. Yadav P; Seth RK; Reynolds SE J Insect Physiol; 2024 Jul; 156():104664. PubMed ID: 38897288 [TBL] [Abstract][Full Text] [Related]
20. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. Chakroun M; Bel Y; Caccia S; Abdelkefi-Mesrati L; Escriche B; Ferré J J Invertebr Pathol; 2012 Jul; 110(3):334-9. PubMed ID: 22465567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]