BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27025773)

  • 21. Structural basis of J cochaperone binding and regulation of Hsp70.
    Jiang J; Maes EG; Taylor AB; Wang L; Hinck AP; Lafer EM; Sousa R
    Mol Cell; 2007 Nov; 28(3):422-33. PubMed ID: 17996706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Close and Allosteric Opening of the Polypeptide-Binding Site in a Human Hsp70 Chaperone BiP.
    Yang J; Nune M; Zong Y; Zhou L; Liu Q
    Structure; 2015 Dec; 23(12):2191-2203. PubMed ID: 26655470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate.
    Zhang P; Leu JI; Murphy ME; George DL; Marmorstein R
    PLoS One; 2014; 9(7):e103518. PubMed ID: 25058147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allostery in Hsp70 chaperones is transduced by subdomain rotations.
    Bhattacharya A; Kurochkin AV; Yip GN; Zhang Y; Bertelsen EB; Zuiderweg ER
    J Mol Biol; 2009 May; 388(3):475-90. PubMed ID: 19361428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The specialized Hsp70 (HscA) interdomain linker binds to its nucleotide-binding domain and stimulates ATP hydrolysis in both cis and trans configurations.
    Alderson TR; Kim JH; Cai K; Frederick RO; Tonelli M; Markley JL
    Biochemistry; 2014 Nov; 53(46):7148-59. PubMed ID: 25372495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Switches, catapults, and chaperones: steady-state kinetic analysis of Hsp70-substrate interactions.
    Chesnokova LS; Witt SN
    Biochemistry; 2005 Aug; 44(33):11224-33. PubMed ID: 16101306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange.
    Arakawa A; Handa N; Ohsawa N; Shida M; Kigawa T; Hayashi F; Shirouzu M; Yokoyama S
    Structure; 2010 Mar; 18(3):309-19. PubMed ID: 20223214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain.
    Moro F; Fernández-Sáiz V; Muga A
    Protein Sci; 2006 Feb; 15(2):223-33. PubMed ID: 16384998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The nucleotide-bound/substrate-bound conformation of the Mycoplasma genitalium DnaK chaperone.
    Adell M; Calisto BM; Fita I; Martinelli L
    Protein Sci; 2018 May; 27(5):1000-1007. PubMed ID: 29520883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK.
    Ung PM; Thompson AD; Chang L; Gestwicki JE; Carlson HA
    PLoS Comput Biol; 2013; 9(11):e1003279. PubMed ID: 24277995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.
    Slepenkov SV; Patchen B; Peterson KM; Witt SN
    Biochemistry; 2003 May; 42(19):5867-76. PubMed ID: 12741845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities.
    Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B
    Acta Biochim Pol; 2007; 54(3):509-22. PubMed ID: 17882322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multistep mechanism of substrate binding determines chaperone activity of Hsp70.
    Mayer MP; Schröder H; Rüdiger S; Paal K; Laufen T; Bukau B
    Nat Struct Biol; 2000 Jul; 7(7):586-93. PubMed ID: 10876246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation.
    Xu L; Gong W; Cusack SA; Wu H; Loovers HM; Zhang H; Perrett S; Jones GW
    Cell Mol Life Sci; 2018 Apr; 75(8):1445-1459. PubMed ID: 29124308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping the conformation of a client protein through the Hsp70 functional cycle.
    Sekhar A; Rosenzweig R; Bouvignies G; Kay LE
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10395-400. PubMed ID: 26240333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interdomain communication in the molecular chaperone DnaK.
    Han W; Christen P
    Biochem J; 2003 Feb; 369(Pt 3):627-34. PubMed ID: 12383055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extrapolation of Inter Domain Communications and Substrate Binding Cavity of Camel HSP70 1A: A Molecular Modeling and Dynamics Simulation Study.
    Gupta S; Rao AR; Varadwaj PK; De S; Mohapatra T
    PLoS One; 2015; 10(8):e0136630. PubMed ID: 26313938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70.
    Wittung-Stafshede P; Guidry J; Horne BE; Landry SJ
    Biochemistry; 2003 May; 42(17):4937-44. PubMed ID: 12718535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations shows real-time lid opening in Hsp70 chaperone.
    Mahto FK; Bhattacharya A; Bhattacharya S
    J Mol Graph Model; 2024 Jun; 129():108726. PubMed ID: 38377794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.