These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 27026396)

  • 21. Recent progress towards a molecular understanding of Marfan syndrome.
    Dietz HC; Loeys B; Carta L; Ramirez F
    Am J Med Genet C Semin Med Genet; 2005 Nov; 139C(1):4-9. PubMed ID: 16273535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix.
    Kielty CM; Wess TJ; Haston L; Ashworth JL; Sherratt MJ; Shuttleworth CA
    J Muscle Res Cell Motil; 2002; 23(5-6):581-96. PubMed ID: 12785107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assembly of fibrillin microfibrils governs extracellular deposition of latent TGF beta.
    Massam-Wu T; Chiu M; Choudhury R; Chaudhry SS; Baldwin AK; McGovern A; Baldock C; Shuttleworth CA; Kielty CM
    J Cell Sci; 2010 Sep; 123(Pt 17):3006-18. PubMed ID: 20699357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The molecular pathogenesis of the Marfan syndrome.
    Robinson PN; Booms P
    Cell Mol Life Sci; 2001 Oct; 58(11):1698-707. PubMed ID: 11706995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein.
    Isogai Z; Ono RN; Ushiro S; Keene DR; Chen Y; Mazzieri R; Charbonneau NL; Reinhardt DP; Rifkin DB; Sakai LY
    J Biol Chem; 2003 Jan; 278(4):2750-7. PubMed ID: 12429738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do extracellular matrix protein expressions change with cyclic reproductive hormones in pelvic connective tissue from women with stress urinary incontinence?
    Wen Y; Polan ML; Chen B
    Hum Reprod; 2006 May; 21(5):1266-73. PubMed ID: 16452154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the latent transforming growth factor beta binding protein 1 in fibrillin-containing microfibrils in bone cells in vitro and in vivo.
    Dallas SL; Keene DR; Bruder SP; Saharinen J; Sakai LY; Mundy GR; Bonewald LF
    J Bone Miner Res; 2000 Jan; 15(1):68-81. PubMed ID: 10646116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissecting the fibrillin microfibril: structural insights into organization and function.
    Jensen SA; Robertson IB; Handford PA
    Structure; 2012 Feb; 20(2):215-25. PubMed ID: 22325771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and function of the mammalian fibrillin gene family: implications for human connective tissue diseases.
    Davis MR; Summers KM
    Mol Genet Metab; 2012 Dec; 107(4):635-47. PubMed ID: 22921888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fibrillin microfibril structure identifies long-range effects of inherited pathogenic mutations affecting a key regulatory latent TGFβ-binding site.
    Godwin ARF; Dajani R; Zhang X; Thomson J; Holmes DF; Adamo CS; Sengle G; Sherratt MJ; Roseman AM; Baldock C
    Nat Struct Mol Biol; 2023 May; 30(5):608-618. PubMed ID: 37081316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse.
    Gayraud B; Keene DR; Sakai LY; Ramirez F
    J Cell Biol; 2000 Aug; 150(3):667-80. PubMed ID: 10931876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the molecular basis of Marfan syndrome: a growth industry.
    Byers PH
    J Clin Invest; 2004 Jul; 114(2):161-3. PubMed ID: 15254580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elastic and collagenous networks in vascular diseases.
    Arteaga-Solis E; Gayraud B; Ramirez F
    Cell Struct Funct; 2000 Apr; 25(2):69-72. PubMed ID: 10885576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonselective assembly of fibrillin 1 and fibrillin 2 in the rodent ocular zonule and in cultured cells: implications for Marfan syndrome.
    Beene LC; Wang LW; Hubmacher D; Keene DR; Reinhardt DP; Annis DS; Mosher DF; Mecham RP; Traboulsi EI; Apte SS
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8337-44. PubMed ID: 24265020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly assay identifies a critical region of human fibrillin-1 required for 10-12 nm diameter microfibril biogenesis.
    Jensen SA; Atwa O; Handford PA
    PLoS One; 2021; 16(3):e0248532. PubMed ID: 33735269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abnormal fibrillin assembly by dermal fibroblasts from two patients with Marfan syndrome.
    Kielty CM; Shuttleworth CA
    J Cell Biol; 1994 Mar; 124(6):997-1004. PubMed ID: 8132720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale Structural Comparison of Fibrillin-1 Microfibrils Isolated from Marfan and Non-Marfan Syndrome Human Aorta.
    Șulea CM; Mártonfalvi Z; Csányi C; Haluszka D; Pólos M; Ágg B; Stengl R; Benke K; Szabolcs Z; Kellermayer MSZ
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibrillin-1 misfolding and disease.
    Whiteman P; Hutchinson S; Handford PA
    Antioxid Redox Signal; 2006; 8(3-4):338-46. PubMed ID: 16677079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.
    Zeyer KA; Reinhardt DP
    Mutat Res Rev Mutat Res; 2015; 765():7-18. PubMed ID: 26281765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells.
    Mariko B; Ghandour Z; Raveaud S; Quentin M; Usson Y; Verdetti J; Huber P; Kielty C; Faury G
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C977-87. PubMed ID: 20686071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.