These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27026402)

  • 41. Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus.
    Schneider K; Gollan U; Dröttboom M; Selsemeier-Voigt S; Müller A
    Eur J Biochem; 1997 Mar; 244(3):789-800. PubMed ID: 9108249
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structures and reaction dynamics of N
    Dance I
    Dalton Trans; 2021 Dec; 50(48):18212-18237. PubMed ID: 34860237
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High Throughput Catalyst Design.
    Fuller J; An Q; Fortunelli A; Goddard WA
    Acc Chem Res; 2022 Apr; 55(8):1124-1134. PubMed ID: 35387450
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of an enzyme-bound intermediate in N2 reduction and of NH3 formation.
    Thorneley RN; Lowe DJ
    Biochem J; 1984 Dec; 224(3):887-94. PubMed ID: 6395862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Postbiosynthetic modification of a precursor to the nitrogenase iron-molybdenum cofactor.
    Srisantitham S; Badding ED; Suess DLM
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands.
    Čorić I; Holland PL
    J Am Chem Soc; 2016 Jun; 138(23):7200-11. PubMed ID: 27171599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CowN sustains nitrogenase turnover in the presence of the inhibitor carbon monoxide.
    Medina MS; Bretzing KO; Aviles RA; Chong KM; Espinoza A; Garcia CNG; Katz BB; Kharwa RN; Hernandez A; Lee JL; Lee TM; Lo Verde C; Strul MW; Wong EY; Owens CP
    J Biol Chem; 2021; 296():100501. PubMed ID: 33667548
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrogen Fixation via a Terminal Fe(IV) Nitride.
    Thompson NB; Green MT; Peters JC
    J Am Chem Soc; 2017 Nov; 139(43):15312-15315. PubMed ID: 28992418
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction.
    Dilworth MJ; Eldridge ME; Eady RR
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):395-400. PubMed ID: 8424785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural Enzymology of Nitrogenase Enzymes.
    Einsle O; Rees DC
    Chem Rev; 2020 Jun; 120(12):4969-5004. PubMed ID: 32538623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decoding the nitrogenase mechanism: the homologue approach.
    Hu Y; Ribbe MW
    Acc Chem Res; 2010 Mar; 43(3):475-84. PubMed ID: 20030377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo energetics and control of nitrogen fixation: changes in the adenylate energy charge and adenosine 5'-diphosphate/adenosine 5'-triphosphate ratio of cells during growth on dinitrogen versus growth on ammonia.
    Upchurch RG; Mortenson LE
    J Bacteriol; 1980 Jul; 143(1):274-84. PubMed ID: 6995432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanistic insight into N=N cleavage by a low-coordinate iron(II) hydride complex.
    Sadique AR; Gregory EA; Brennessel WW; Holland PL
    J Am Chem Soc; 2007 Jul; 129(26):8112-21. PubMed ID: 17564444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The One-Electron Reduced Active-Site FeFe-Cofactor of Fe-Nitrogenase Contains a Hydride Bound to a Formally Oxidized Metal-Ion Core.
    Lukoyanov DA; Harris DF; Yang ZY; Pérez-González A; Dean DR; Seefeldt LC; Hoffman BM
    Inorg Chem; 2022 Apr; 61(14):5459-5464. PubMed ID: 35357830
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis.
    Nyborg AC; Johnson JL; Gunn A; Watt GD
    J Biol Chem; 2000 Dec; 275(50):39307-12. PubMed ID: 11005818
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Critical E
    Rohde M; Sippel D; Trncik C; Andrade SLA; Einsle O
    Biochemistry; 2018 Sep; 57(38):5497-5504. PubMed ID: 29965738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation.
    Howard JB; Rees DC
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17088-93. PubMed ID: 17088547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unraveling the interactions of the physiological reductant flavodoxin with the different conformations of the Fe protein in the nitrogenase cycle.
    Pence N; Tokmina-Lukaszewska M; Yang ZY; Ledbetter RN; Seefeldt LC; Bothner B; Peters JW
    J Biol Chem; 2017 Sep; 292(38):15661-15669. PubMed ID: 28784660
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase.
    Hickey DP; Cai R; Yang ZY; Grunau K; Einsle O; Seefeldt LC; Minteer SD
    J Am Chem Soc; 2019 Oct; 141(43):17150-17157. PubMed ID: 31577428
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.