These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 27026582)
21. NF-E2 disrupts chromatin structure at human beta-globin locus control region hypersensitive site 2 in vitro. Armstrong JA; Emerson BM Mol Cell Biol; 1996 Oct; 16(10):5634-44. PubMed ID: 8816476 [TBL] [Abstract][Full Text] [Related]
22. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Feng D; Kan YW Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9896-900. PubMed ID: 15998736 [TBL] [Abstract][Full Text] [Related]
23. Histone acetylation contributes to chromatin looping between the locus control region and globin gene by influencing hypersensitive site formation. Kim YW; Kim A Biochim Biophys Acta; 2013 Sep; 1829(9):963-9. PubMed ID: 23607989 [TBL] [Abstract][Full Text] [Related]
24. Nucleosome and transcription activator antagonism at human beta-globin locus control region DNase I hypersensitive sites. Kim A; Song SH; Brand M; Dean A Nucleic Acids Res; 2007; 35(17):5831-8. PubMed ID: 17720709 [TBL] [Abstract][Full Text] [Related]
25. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region. Gong QH; McDowell JC; Dean A Mol Cell Biol; 1996 Nov; 16(11):6055-64. PubMed ID: 8887635 [TBL] [Abstract][Full Text] [Related]
26. Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter. Johnson KD; Christensen HM; Zhao B; Bresnick EH Mol Cell; 2001 Aug; 8(2):465-71. PubMed ID: 11545748 [TBL] [Abstract][Full Text] [Related]
27. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice. Shimotsuma M; Okamura E; Matsuzaki H; Fukamizu A; Tanimoto K J Biol Chem; 2010 May; 285(19):14495-503. PubMed ID: 20231293 [TBL] [Abstract][Full Text] [Related]
28. Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding. Alhashem YN; Vinjamur DS; Basu M; Klingmüller U; Gaensler KM; Lloyd JA J Biol Chem; 2011 Jul; 286(28):24819-27. PubMed ID: 21610079 [TBL] [Abstract][Full Text] [Related]
29. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture. Mahajan MC; Karmakar S; Newburger PE; Krause DS; Weissman SM Exp Hematol; 2009 Oct; 37(10):1143-1156.e3. PubMed ID: 19607874 [TBL] [Abstract][Full Text] [Related]
30. Krüppel-Like Transcription Factor KLF1 Is Required for Optimal γ- and β-Globin Expression in Human Fetal Erythroblasts. Vinjamur DS; Alhashem YN; Mohamad SF; Amin P; Williams DC; Lloyd JA PLoS One; 2016; 11(2):e0146802. PubMed ID: 26840243 [TBL] [Abstract][Full Text] [Related]
31. Globin gene switching. In vivo protein-DNA interactions of the human beta-globin locus in erythroid cells expressing the fetal or the adult globin gene program. Ikuta T; Papayannopoulou T; Stamatoyannopoulos G; Kan YW J Biol Chem; 1996 Jun; 271(24):14082-91. PubMed ID: 8662960 [TBL] [Abstract][Full Text] [Related]
32. Interferon-γ suppresses activin A/NF-E2 induction of erythroid gene expression through the NF-κB/c-Jun pathway. Lee WH; Chung MH; Tsai YH; Chang JL; Huang HM Am J Physiol Cell Physiol; 2014 Feb; 306(4):C407-14. PubMed ID: 24336657 [TBL] [Abstract][Full Text] [Related]
33. Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells. Kiefer CM; Lee J; Hou C; Dale RK; Lee YT; Meier ER; Miller JL; Dean A Blood; 2011 Dec; 118(23):6200-8. PubMed ID: 22010104 [TBL] [Abstract][Full Text] [Related]
34. The hypersensitive sites of the murine β-globin locus control region act independently to affect nuclear localization and transcriptional elongation. Bender MA; Ragoczy T; Lee J; Byron R; Telling A; Dean A; Groudine M Blood; 2012 Apr; 119(16):3820-7. PubMed ID: 22378846 [TBL] [Abstract][Full Text] [Related]
35. Dual role for the methyltransferase G9a in the maintenance of beta-globin gene transcription in adult erythroid cells. Chaturvedi CP; Hosey AM; Palii C; Perez-Iratxeta C; Nakatani Y; Ranish JA; Dilworth FJ; Brand M Proc Natl Acad Sci U S A; 2009 Oct; 106(43):18303-8. PubMed ID: 19822740 [TBL] [Abstract][Full Text] [Related]
36. LRF acts as an activator and repressor of the human β-like globin gene transcription in a developmental stage dependent manner. Kang J; Kang Y; Kim YW; You J; Kang J; Kim A Biochem Cell Biol; 2019 Aug; 97(4):380-386. PubMed ID: 30427207 [TBL] [Abstract][Full Text] [Related]
37. Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer. Kotkow KJ; Orkin SH Mol Cell Biol; 1995 Aug; 15(8):4640-7. PubMed ID: 7623856 [TBL] [Abstract][Full Text] [Related]
38. MafK/NF-E2 p18 is required for beta-globin genes activation by mediating the proximity of LCR and active beta-globin genes in MEL cell line. Du MJ; Lv X; Hao DL; Zhao GW; Wu XS; Wu F; Liu DP; Liang CC Int J Biochem Cell Biol; 2008; 40(8):1481-93. PubMed ID: 18308612 [TBL] [Abstract][Full Text] [Related]
39. T-cell acute leukemia 1 (TAL1) regulation of erythropoietin receptor and association with excessive erythrocytosis. Rogers H; Wang L; Yu X; Alnaeeli M; Cui K; Zhao K; Bieker JJ; Prchal J; Huang S; Weksler B; Noguchi CT J Biol Chem; 2012 Oct; 287(44):36720-31. PubMed ID: 22982397 [TBL] [Abstract][Full Text] [Related]
40. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. Stamatoyannopoulos JA; Goodwin A; Joyce T; Lowrey CH EMBO J; 1995 Jan; 14(1):106-16. PubMed ID: 7828582 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]