These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 27026618)
1. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning. Osborne JD; Wyatt M; Westfall AO; Willig J; Bethard S; Gordon G J Am Med Inform Assoc; 2016 Nov; 23(6):1077-1084. PubMed ID: 27026618 [TBL] [Abstract][Full Text] [Related]
2. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing. Garg R; Oh E; Naidech A; Kording K; Prabhakaran S J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549 [TBL] [Abstract][Full Text] [Related]
3. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics. Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274 [TBL] [Abstract][Full Text] [Related]
4. Using natural language processing to identify problem usage of prescription opioids. Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569 [TBL] [Abstract][Full Text] [Related]
5. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392 [TBL] [Abstract][Full Text] [Related]
6. Machine learning classification of surgical pathology reports and chunk recognition for information extraction noise reduction. Napolitano G; Marshall A; Hamilton P; Gavin AT Artif Intell Med; 2016 Jun; 70():77-83. PubMed ID: 27431038 [TBL] [Abstract][Full Text] [Related]
7. Machine learning application for incident prostate adenocarcinomas automatic registration in a French regional cancer registry. Fabacher T; Godet J; Klein D; Velten M; Jegu J Int J Med Inform; 2020 Jul; 139():104139. PubMed ID: 32330852 [TBL] [Abstract][Full Text] [Related]
8. Using natural language processing and machine learning to identify breast cancer local recurrence. Zeng Z; Espino S; Roy A; Li X; Khan SA; Clare SE; Jiang X; Neapolitan R; Luo Y BMC Bioinformatics; 2018 Dec; 19(Suppl 17):498. PubMed ID: 30591037 [TBL] [Abstract][Full Text] [Related]
9. Extracting important information from Chinese Operation Notes with natural language processing methods. Wang H; Zhang W; Zeng Q; Li Z; Feng K; Liu L J Biomed Inform; 2014 Apr; 48():130-6. PubMed ID: 24486562 [TBL] [Abstract][Full Text] [Related]
10. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
11. University of California, Irvine-Pathology Extraction Pipeline: the pathology extraction pipeline for information extraction from pathology reports. Ashish N; Dahm L; Boicey C Health Informatics J; 2014 Dec; 20(4):288-305. PubMed ID: 25155030 [TBL] [Abstract][Full Text] [Related]
12. General Symptom Extraction from VA Electronic Medical Notes. Divita G; Luo G; Tran LT; Workman TE; Gundlapalli AV; Samore MH Stud Health Technol Inform; 2017; 245():356-360. PubMed ID: 29295115 [TBL] [Abstract][Full Text] [Related]
13. Automated Learning of Temporal Expressions. Redd D; Shaoa Y; Yang J; Divita G; Zeng-Treitler Q Stud Health Technol Inform; 2015; 216():639-42. PubMed ID: 26262129 [TBL] [Abstract][Full Text] [Related]
14. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
15. Evaluating Methods for Identifying Cancer in Free-Text Pathology Reports Using Various Machine Learning and Data Preprocessing Approaches. Kasthurirathne SN; Dixon BE; Grannis SJ Stud Health Technol Inform; 2015; 216():1070. PubMed ID: 26262369 [TBL] [Abstract][Full Text] [Related]
16. Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts. Ladas N; Borchert F; Franz S; Rehberg A; Strauch N; Sommer KK; Marschollek M; Gietzelt M Health Informatics J; 2023; 29(2):14604582231164696. PubMed ID: 37068028 [TBL] [Abstract][Full Text] [Related]
17. Scaling-up NLP Pipelines to Process Large Corpora of Clinical Notes. Divita G; Carter M; Redd A; Zeng Q; Gupta K; Trautner B; Samore M; Gundlapalli A Methods Inf Med; 2015; 54(6):548-52. PubMed ID: 26534722 [TBL] [Abstract][Full Text] [Related]
18. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks. Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668 [TBL] [Abstract][Full Text] [Related]
19. Recognizing Questions and Answers in EMR Templates Using Natural Language Processing. Divita G; Shen S; Carter ME; Redd A; Forbush T; Palmer M; Samore MH; Gundlapalli AV Stud Health Technol Inform; 2014; 202():149-52. PubMed ID: 25000038 [TBL] [Abstract][Full Text] [Related]