These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27026851)

  • 1. A novel approach to solve nonlinear Fredholm integral equations of the second kind.
    Li H; Huang J
    Springerplus; 2016; 5():154. PubMed ID: 27026851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem.
    Altürk A
    Springerplus; 2016; 5(1):1962. PubMed ID: 27933241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random search algorithm for solving the nonlinear Fredholm integral equations of the second kind.
    Hong Z; Yan Z; Yan J
    PLoS One; 2014; 9(7):e103068. PubMed ID: 25072373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximate solutions to several classes of Volterra and Fredholm integral equations using the neural network algorithm based on the sine-cosine basis function and extreme learning machine.
    Lu Y; Zhang S; Weng F; Sun H
    Front Comput Neurosci; 2023; 17():1120516. PubMed ID: 36968294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral technique with convergence analysis for solving one and two-dimensional mixed Volterra-Fredholm integral equation.
    Amin AZ; Amin AK; Abdelkawy MA; Alluhaybi AA; Hashim I
    PLoS One; 2023; 18(5):e0283746. PubMed ID: 37235577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient numerical technique for solution of delay Volterra-Fredholm integral equations using Haar wavelet.
    Amin R; Shah K; Asif M; Khan I
    Heliyon; 2020 Oct; 6(10):e05108. PubMed ID: 33083601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving Fredholm Integral Equations Using Deep Learning.
    Guan Y; Fang T; Zhang D; Jin C
    Int J Appl Comput Math; 2022; 8(2):87. PubMed ID: 35372640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of block-pulse functions and Bernoulli polynomials.
    Mashayekhi S; Razzaghi M; Tripak O
    ScientificWorldJournal; 2014; 2014():413623. PubMed ID: 24523638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two variables and their applications.
    Xu R; Ma X
    J Inequal Appl; 2017; 2017(1):187. PubMed ID: 28860688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthonormal Bernoulli Polynomials for Solving a Class of Two Dimensional Stochastic Volterra-Fredholm Integral Equations.
    Pourdarvish A; Sayevand K; Masti I; Kumar S
    Int J Appl Comput Math; 2022; 8(1):31. PubMed ID: 35097164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On some nonlinear retarded Volterra-Fredholm type integral inequalities on time scales and their applications.
    Liu H
    J Inequal Appl; 2018; 2018(1):211. PubMed ID: 30839564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fredholm boundary-value problem for the system of fractional differential equations.
    Boichuk O; Feruk V
    Nonlinear Dyn; 2023; 111(8):7459-7468. PubMed ID: 36687007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homotopy perturbation method: a versatile tool to evaluate linear and nonlinear fuzzy Volterra integral equations of the second kind.
    Narayanamoorthy S; Sathiyapriya SP
    Springerplus; 2016; 5():387. PubMed ID: 27047713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Picard and Newton iteration for solving nonlinear ground water flow equations.
    Mehl S
    Ground Water; 2006; 44(4):583-94. PubMed ID: 16857036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving 2D Fredholm Integral from Incomplete Measurements Using Compressive Sensing.
    Cloninger A; Czaja W; Bai R; Basser PJ
    SIAM J Imaging Sci; 2014; 7(3):1775-1798. PubMed ID: 34267858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A NEW APPROACH TO THE NUMERICAL SOLUTION OF A CLASS OF LINEAR AND NONLINEAR INTEGRAL EQUATIONS OF FREDHOLM TYPE.
    Bellman R
    Proc Natl Acad Sci U S A; 1965 Dec; 54(6):1501-3. PubMed ID: 16591319
    [No Abstract]   [Full Text] [Related]  

  • 17. Evans function and Fredholm determinants.
    Karambal I; Malham SJ
    Proc Math Phys Eng Sci; 2015 Feb; 471(2174):20140597. PubMed ID: 25663806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fitted operator numerical method for singularly perturbed Fredholm integro-differential equation with integral initial condition.
    Oljira AF; Woldaregay MM
    BMC Res Notes; 2024 Jan; 17(1):23. PubMed ID: 38225651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition.
    Durmaz ME; Amirali I; Amiraliyev GM
    J Appl Math Comput; 2023; 69(1):505-528. PubMed ID: 35698573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Collocation Method for Numerical Solution of Nonlinear Delay Integro-Differential Equations for Wireless Sensor Network and Internet of Things.
    Amin R; Nazir S; García-Magariño I
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.