BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2702726)

  • 1. Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes.
    Hennings H; Kruszewski FH; Yuspa SH; Tucker RW
    Carcinogenesis; 1989 Apr; 10(4):777-80. PubMed ID: 2702726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the regulation of intracellular calcium in normal and neoplastic keratinocytes are not caused by ras gene mutations.
    Kruszewski FH; Hennings H; Tucker RW; Yuspa SH
    Cancer Res; 1991 Aug; 51(16):4206-12. PubMed ID: 1907882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of intracellular free calcium in normal murine keratinocytes.
    Kruszewski FH; Hennings H; Yuspa SH; Tucker RW
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C767-73. PubMed ID: 1951667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro.
    Li L; Tucker RW; Hennings H; Yuspa SH
    J Cell Physiol; 1995 Apr; 163(1):105-14. PubMed ID: 7896886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3.
    Pillai S; Bikle DD
    J Cell Physiol; 1991 Jan; 146(1):94-100. PubMed ID: 1990023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitors of the intracellular Ca(2+)-ATPase in cultured mouse keratinocytes reveal components of terminal differentiation that are regulated by distinct intracellular Ca2+ compartments.
    Li L; Tucker RW; Hennings H; Yuspa SH
    Cell Growth Differ; 1995 Sep; 6(9):1171-84. PubMed ID: 8519694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor.
    Bikle DD; Ratnam A; Mauro T; Harris J; Pillai S
    J Clin Invest; 1996 Feb; 97(4):1085-93. PubMed ID: 8613532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suspension-induced murine keratinocyte differentiation is mediated by calcium.
    Li L; Tennenbaum T; Yuspa SH
    J Invest Dermatol; 1996 Feb; 106(2):254-60. PubMed ID: 8601725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupling of the calcium-sensing mechanism and differentiation in squamous carcinoma cell lines.
    Pillai S; Bikle DD; Mancianti ML; Hincenbergs M
    Exp Cell Res; 1991 Feb; 192(2):567-73. PubMed ID: 1988295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine triphosphate stimulates phosphoinositide metabolism, mobilizes intracellular calcium, and inhibits terminal differentiation of human epidermal keratinocytes.
    Pillai S; Bikle DD
    J Clin Invest; 1992 Jul; 90(1):42-51. PubMed ID: 1321844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and quantitation of calcium pools and calcium binding sites in cultured human keratinocytes.
    Pillai S; Menon GK; Bikle DD; Elias PM
    J Cell Physiol; 1993 Jan; 154(1):101-12. PubMed ID: 8419397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular free calcium and mitosis in mammalian cells: anaphase onset is calcium modulated, but is not triggered by a brief transient.
    Tombes RM; Borisy GG
    J Cell Biol; 1989 Aug; 109(2):627-36. PubMed ID: 2668300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1,25 dihydroxyvitamin D3 enhances the calcium response of keratinocytes.
    Ratnam AV; Bikle DD; Cho JK
    J Cell Physiol; 1999 Feb; 178(2):188-96. PubMed ID: 10048583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation.
    Pillai S; Bikle DD
    J Cell Physiol; 1992 Jun; 151(3):623-9. PubMed ID: 1363554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation and characterization of cells derived from mouse skin papillomas induced by an initiation-promotion protocol.
    Yuspa SH; Morgan D; Lichti U; Spangler EF; Michael D; Kilkenny A; Hennings H
    Carcinogenesis; 1986 Jun; 7(6):949-58. PubMed ID: 2871947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of platelet-derived growth factor and fibroblast growth factor on free intracellular calcium and mitogenesis.
    Tucker RW; Chang DT; Meade-Cobun K
    J Cell Biochem; 1989 Feb; 39(2):139-51. PubMed ID: 2715198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal transduction for proliferation and differentiation in keratinocytes.
    Yuspa SH; Hennings H; Tucker RW; Jaken S; Kilkenny AE; Roop DR
    Ann N Y Acad Sci; 1988; 548():191-6. PubMed ID: 2470295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keratinocyte growth factor receptor ligands induce transforming growth factor alpha expression and activate the epidermal growth factor receptor signaling pathway in cultured epidermal keratinocytes.
    Dlugosz AA; Cheng C; Denning MF; Dempsey PJ; Coffey RJ; Yuspa SH
    Cell Growth Differ; 1994 Dec; 5(12):1283-92. PubMed ID: 7535082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in epidermal biochemistry as a consequence of stage-specific genetic changes in skin carcinogenesis.
    Yuspa SH; Kilkenny A; Cheng C; Roop D; Hennings H; Kruszewski F; Lee E; Strickland J; Greenhalgh DA
    Environ Health Perspect; 1991 Jun; 93():3-10. PubMed ID: 1773799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered calcium signal transduction in B-1 malignant cells.
    Dang AM; Balasubramanyam M; Garcia Z; Raveche E; Gardner JP
    Immunol Cell Biol; 1995 Dec; 73(6):511-20. PubMed ID: 8713472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.