These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27027281)

  • 1. Discovery of a Promiscuous Non-Heme Iron Halogenase in Ambiguine Alkaloid Biogenesis: Implication for an Evolvable Enzyme Family for Late-Stage Halogenation of Aliphatic Carbons in Small Molecules.
    Hillwig ML; Zhu Q; Ittiamornkul K; Liu X
    Angew Chem Int Ed Engl; 2016 May; 55(19):5780-4. PubMed ID: 27027281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Analysis of Cyanobacterial Nonheme Iron-Dependent Aliphatic Halogenases WelO5 and AmbO5.
    Liu X
    Methods Enzymol; 2018; 604():389-404. PubMed ID: 29779660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolved Aliphatic Halogenases Enable Regiocomplementary C-H Functionalization of a Pharmaceutically Relevant Compound.
    Hayashi T; Ligibel M; Sager E; Voss M; Hunziker J; Schroer K; Snajdrova R; Buller R
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18535-18539. PubMed ID: 31589798
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Zhu Q; Liu X
    Beilstein J Org Chem; 2017; 13():1168-1173. PubMed ID: 28684995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aliphatic Halogenase Enables Late-Stage C-H Functionalization: Selective Synthesis of a Brominated Fischerindole Alkaloid with Enhanced Antibacterial Activity.
    Zhu Q; Hillwig ML; Doi Y; Liu X
    Chembiochem; 2016 Mar; 17(6):466-70. PubMed ID: 26749394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Guided Reprogramming of a Hydroxylase To Halogenate Its Small Molecule Substrate.
    Mitchell AJ; Dunham NP; Bergman JA; Wang B; Zhu Q; Chang WC; Liu X; Boal AK
    Biochemistry; 2017 Jan; 56(3):441-444. PubMed ID: 28029241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens.
    Büchler J; Malca SH; Patsch D; Voss M; Turner NJ; Bornscheuer UT; Allemann O; Le Chapelain C; Lumbroso A; Loiseleur O; Buller R
    Nat Commun; 2022 Jan; 13(1):371. PubMed ID: 35042883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Biocatalytic Potential of Fe/α-Ketoglutarate-Dependent Halogenases.
    Voss M; Honda Malca S; Buller R
    Chemistry; 2020 Jun; 26(33):7336-7345. PubMed ID: 31968136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds.
    Sana B; Ho T; Kannan S; Ke D; Li EHY; Seayad J; Verma CS; Duong HA; Ghadessy FJ
    Chembiochem; 2021 Sep; 22(18):2791-2798. PubMed ID: 34240527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new family of iron-dependent halogenases acts on freestanding substrates.
    Hillwig ML; Liu X
    Nat Chem Biol; 2014 Nov; 10(11):921-3. PubMed ID: 25218740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua.
    Hillwig ML; Zhu Q; Liu X
    ACS Chem Biol; 2014 Feb; 9(2):372-7. PubMed ID: 24180436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Promiscuous Halogenase for the Derivatization of Flavonoids.
    Kolling D; Stierhof M; Lasch C; Myronovskyi M; Luzhetskyy A
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorination versus hydroxylation selectivity mediated by the non-heme iron halogenase WelO5.
    Zhang X; Wang Z; Gao J; Liu W
    Phys Chem Chem Phys; 2020 Apr; 22(16):8699-8712. PubMed ID: 32270839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor.
    Glenn WS; Nims E; O'Connor SE
    J Am Chem Soc; 2011 Dec; 133(48):19346-9. PubMed ID: 22050348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and genetic basis for early stage structural diversifications in hapalindole-type alkaloid biogenesis.
    Zhu Q; Liu X
    Chem Commun (Camb); 2017 Mar; 53(19):2826-2829. PubMed ID: 28225144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic chlorination and bromination.
    van Pée KH
    Methods Enzymol; 2012; 516():237-57. PubMed ID: 23034232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5.
    Mitchell AJ; Zhu Q; Maggiolo AO; Ananth NR; Hillwig ML; Liu X; Boal AK
    Nat Chem Biol; 2016 Aug; 12(8):636-40. PubMed ID: 27348090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of a Calcium-Dependent Enzymatic Cascade for the Selective Assembly of Hapalindole-Type Alkaloids: On the Biosynthetic Origin of Hapalindole U.
    Zhu Q; Liu X
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9062-9066. PubMed ID: 28626997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
    Shepherd SA; Menon BR; Fisk H; Struck AW; Levy C; Leys D; Micklefield J
    Chembiochem; 2016 May; 17(9):821-4. PubMed ID: 26840773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable multi-halogenation of a non-native substrate by SyrB2 iron halogenase.
    Wilson RH; Chatterjee S; Smithwick ER; Damodaran AR; Bhagi-Damodaran A
    bioRxiv; 2024 May; ():. PubMed ID: 38766225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.