These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 27027514)

  • 21. MESuSiE enables scalable and powerful multi-ancestry fine-mapping of causal variants in genome-wide association studies.
    Gao B; Zhou X
    Nat Genet; 2024 Jan; 56(1):170-179. PubMed ID: 38168930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine mapping and accurate prediction of complex traits using Bayesian Variable Selection models applied to biobank-size data.
    de Los Campos G; Grueneberg A; Funkhouser S; Pérez-Rodríguez P; Samaddar A
    Eur J Hum Genet; 2023 Mar; 31(3):313-320. PubMed ID: 35853950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pleiotropic mapping and annotation selection in genome-wide association studies with penalized Gaussian mixture models.
    Zeng P; Hao X; Zhou X
    Bioinformatics; 2018 Aug; 34(16):2797-2807. PubMed ID: 29635306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies.
    Tamba CL; Ni YL; Zhang YM
    PLoS Comput Biol; 2017 Jan; 13(1):e1005357. PubMed ID: 28141824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.
    Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP
    BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reprioritizing genetic associations in hit regions using LASSO-based resample model averaging.
    Valdar W; Sabourin J; Nobel A; Holmes CC
    Genet Epidemiol; 2012 Jul; 36(5):451-62. PubMed ID: 22549815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases.
    Li Y; Kellis M
    Nucleic Acids Res; 2016 Oct; 44(18):e144. PubMed ID: 27407109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Approximate Bayesian neural networks in genomic prediction.
    Waldmann P
    Genet Sel Evol; 2018 Dec; 50(1):70. PubMed ID: 30577737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tag-SNP selection using Bayesian genomewide association study for growth traits in Hereford and Braford cattle.
    Campos GS; Sollero BP; Reimann FA; Junqueira VS; Cardoso LL; Yokoo MJI; Boligon AA; Braccini J; Cardoso FF
    J Anim Breed Genet; 2020 Sep; 137(5):449-467. PubMed ID: 31777136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies.
    Wang Z; Chapman D; Morota G; Cheng H
    G3 (Bethesda); 2020 Dec; 10(12):4439-4448. PubMed ID: 33020191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical methods to detect novel genetic variants using publicly available GWAS summary data.
    Guo B; Wu B
    Comput Biol Chem; 2018 Jun; 74():76-79. PubMed ID: 29558699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian epistasis association mapping via SNP imputation.
    Zhang Y
    Biostatistics; 2011 Apr; 12(2):211-22. PubMed ID: 20923970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multi-trait Bayesian method for mapping QTL and genomic prediction.
    Kemper KE; Bowman PJ; Hayes BJ; Visscher PM; Goddard ME
    Genet Sel Evol; 2018 Mar; 50(1):10. PubMed ID: 29571285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine-mapping additive and dominant SNP effects using group-LASSO and fractional resample model averaging.
    Sabourin J; Nobel AB; Valdar W
    Genet Epidemiol; 2015 Feb; 39(2):77-88. PubMed ID: 25417853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants.
    Lee D; Williamson VS; Bigdeli TB; Riley BP; Fanous AH; Vladimirov VI; Bacanu SA
    Bioinformatics; 2015 Apr; 31(8):1176-82. PubMed ID: 25505091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.
    Chen W; Larrabee BR; Ovsyannikova IG; Kennedy RB; Haralambieva IH; Poland GA; Schaid DJ
    Genetics; 2015 Jul; 200(3):719-36. PubMed ID: 25948564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating functional data to prioritize causal variants in statistical fine-mapping studies.
    Kichaev G; Yang WY; Lindstrom S; Hormozdiari F; Eskin E; Price AL; Kraft P; Pasaniuc B
    PLoS Genet; 2014 Oct; 10(10):e1004722. PubMed ID: 25357204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.