BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27027604)

  • 1. Anticipatory control and spatial cognition in locomotion and navigation through typical development and in cerebral palsy.
    Belmonti V; Cioni G; Berthoz A
    Dev Med Child Neurol; 2016 Mar; 58 Suppl 4():22-7. PubMed ID: 27027604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New paradigms and tests for evaluating and remediating visuospatial deficits in children.
    Berthoz A; Zaoui M
    Dev Med Child Neurol; 2015 Apr; 57 Suppl 2():15-20. PubMed ID: 25690111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cognitive strategies for locomotor navigation in normal development and cerebral palsy.
    Belmonti V; Fiori S; Guzzetta A; Cioni G; Berthoz A
    Dev Med Child Neurol; 2015 Apr; 57 Suppl 2():31-6. PubMed ID: 25690114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor patterns during obstacle avoidance in children with cerebral palsy.
    Cappellini G; Sylos-Labini F; MacLellan MJ; Assenza C; Libernini L; Morelli D; Lacquaniti F; Ivanenko Y
    J Neurophysiol; 2020 Aug; 124(2):574-590. PubMed ID: 32667246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG correlates of spatial orientation in the human retrosplenial complex.
    Lin CT; Chiu TC; Gramann K
    Neuroimage; 2015 Oct; 120():123-32. PubMed ID: 26163801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion.
    Belmonti V; Cioni G; Berthoz A
    Exp Brain Res; 2013 May; 227(1):131-47. PubMed ID: 23588420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis.
    Li J; Zhang R; Liu S; Liang Q; Zheng S; He X; Huang R
    Neuroimage; 2021 Sep; 238():118264. PubMed ID: 34129948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.
    Belmonti V; Cioni G; Berthoz A
    Dev Sci; 2015 Jul; 18(4):569-86. PubMed ID: 25443319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Updating Strategy Affects the Reference Frame in Path Integration.
    He Q; McNamara TP
    Psychon Bull Rev; 2018 Jun; 25(3):1073-1079. PubMed ID: 28497363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goal-oriented locomotion in children with spastic diplegia: Anticipatory orienting strategies and trajectory formation.
    Castilla A; Berthoz A; Cioni G; Belmonti V
    Dev Neurorehabil; 2022 Aug; 25(6):400-409. PubMed ID: 35226571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain Dynamics of Spatial Reference Frame Proclivity in Active Navigation.
    Yang CS; Liu J; Singh AK; Huang KC; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1701-1710. PubMed ID: 34410926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embodied spatial cognition.
    Trafton JG; Harrison AM
    Top Cogn Sci; 2011 Oct; 3(4):686-706. PubMed ID: 25164505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms.
    Hicheur H; Vieilledent S; Berthoz A
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):87-92. PubMed ID: 15936517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of the serotonin receptor type 7 disrupts the acquisition of allocentric but not egocentric navigation strategies in mice.
    Beaudet G; Jozet-Alves C; Asselot R; Schumann-Bard P; Freret T; Boulouard M; Paizanis E
    Behav Brain Res; 2017 Mar; 320():179-185. PubMed ID: 27939340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Egocentric and allocentric navigation strategies in Williams syndrome and typical development.
    Broadbent HJ; Farran EK; Tolmie A
    Dev Sci; 2014 Nov; 17(6):920-34. PubMed ID: 24702907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation.
    Geva-Sagiv M; Las L; Yovel Y; Ulanovsky N
    Nat Rev Neurosci; 2015 Feb; 16(2):94-108. PubMed ID: 25601780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaze anticipation during human locomotion.
    Bernardin D; Kadone H; Bennequin D; Sugar T; Zaoui M; Berthoz A
    Exp Brain Res; 2012 Nov; 223(1):65-78. PubMed ID: 22968738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies.
    Bullens J; Iglói K; Berthoz A; Postma A; Rondi-Reig L
    J Exp Child Psychol; 2010 Nov; 107(3):337-50. PubMed ID: 20598705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disturbance of real space navigation in moderately advanced but not in early Huntington's disease.
    Majerová V; Kalinčík T; Laczó J; Vyhnálek M; Hort J; Bojar M; Růžička E; Roth J
    J Neurol Sci; 2012 Jan; 312(1-2):86-91. PubMed ID: 21875725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children.
    Butler EE; Ladd AL; Lamont LE; Rose J
    Gait Posture; 2010 Jul; 32(3):301-6. PubMed ID: 20558067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.