These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
579 related articles for article (PubMed ID: 27027643)
1. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment. Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643 [TBL] [Abstract][Full Text] [Related]
2. Orenia metallireducens sp. nov. Strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface. Dong Y; Sanford RA; Boyanov MI; Kemner KM; Flynn TM; O'Loughlin EJ; Chang YJ; Locke RA; Weber JR; Egan SM; Mackie RI; Cann I; Fouke BW Appl Environ Microbiol; 2016 Nov; 82(21):6440-6453. PubMed ID: 27565620 [TBL] [Abstract][Full Text] [Related]
3. Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Emmerich M; Bhansali A; Lösekann-Behrens T; Schröder C; Kappler A; Behrens S Appl Environ Microbiol; 2012 Jun; 78(12):4386-99. PubMed ID: 22504804 [TBL] [Abstract][Full Text] [Related]
4. Extremophile microbiomes in acidic and hypersaline river sediments of Western Australia. Lu S; Peiffer S; Lazar CS; Oldham C; Neu TR; Ciobota V; Näb O; Lillicrap A; Rösch P; Popp J; Küsel K Environ Microbiol Rep; 2016 Feb; 8(1):58-67. PubMed ID: 26524974 [TBL] [Abstract][Full Text] [Related]
5. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Lin B; Hyacinthe C; Bonneville S; Braster M; Van Cappellen P; Röling WF Environ Microbiol; 2007 Aug; 9(8):1956-68. PubMed ID: 17635542 [TBL] [Abstract][Full Text] [Related]
6. Repeated anaerobic microbial redox cycling of iron. Coby AJ; Picardal F; Shelobolina E; Xu H; Roden EE Appl Environ Microbiol; 2011 Sep; 77(17):6036-42. PubMed ID: 21742920 [TBL] [Abstract][Full Text] [Related]
7. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge. Fabisch M; Freyer G; Johnson CA; Büchel G; Akob DM; Neu TR; Küsel K Geobiology; 2016 Jan; 14(1):68-90. PubMed ID: 26407813 [TBL] [Abstract][Full Text] [Related]
8. Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations. Bray MS; Wu J; Reed BC; Kretz CB; Belli KM; Simister RL; Henny C; Stewart FJ; DiChristina TJ; Brandes JA; Fowle DA; Crowe SA; Glass JB Geobiology; 2017 Sep; 15(5):678-689. PubMed ID: 28419718 [TBL] [Abstract][Full Text] [Related]
9. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. Hori T; Müller A; Igarashi Y; Conrad R; Friedrich MW ISME J; 2010 Feb; 4(2):267-78. PubMed ID: 19776769 [TBL] [Abstract][Full Text] [Related]
10. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Omoregie EO; Mastalerz V; de Lange G; Straub KL; Kappler A; Røy H; Stadnitskaia A; Foucher JP; Boetius A Appl Environ Microbiol; 2008 May; 74(10):3198-215. PubMed ID: 18378658 [TBL] [Abstract][Full Text] [Related]
11. Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho). Cummings DE; March AW; Bostick B; Spring S; Caccavo F; Fendorf S; Rosenzweig RF Appl Environ Microbiol; 2000 Jan; 66(1):154-62. PubMed ID: 10618217 [TBL] [Abstract][Full Text] [Related]
12. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Wei G; Li M; Li F; Li H; Gao Z Appl Microbiol Biotechnol; 2016 Nov; 100(22):9683-9697. PubMed ID: 27557722 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326 [TBL] [Abstract][Full Text] [Related]
14. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia. Devereux R; Mosher JJ; Vishnivetskaya TA; Brown SD; Beddick DL; Yates DF; Palumbo AV Geobiology; 2015 Sep; 13(5):478-93. PubMed ID: 25939270 [TBL] [Abstract][Full Text] [Related]
15. Photoinduced oxidation of arsenite to arsenate in the presence of goethite. Bhandari N; Reeder RJ; Strongin DR Environ Sci Technol; 2012 Aug; 46(15):8044-51. PubMed ID: 22703473 [TBL] [Abstract][Full Text] [Related]
16. Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland. Liu Y; Zhang J; Zhang X; Xie S Appl Microbiol Biotechnol; 2014 Jun; 98(12):5697-707. PubMed ID: 24619246 [TBL] [Abstract][Full Text] [Related]
17. Selection of bacteria capable of dissimilatory reduction of Fe(III) from a long-term continuous culture on molasses and their use in a microbial fuel cell. Sikora A; Wójtowicz-Sieńko J; Piela P; Zielenkiewicz U; Tomczyk-Zak K; Chojnacka A; Sikora R; Kowalczyk P; Grzesiuk E; Błaszczyk M J Microbiol Biotechnol; 2011 Mar; 21(3):305-16. PubMed ID: 21464603 [TBL] [Abstract][Full Text] [Related]
18. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean. Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145 [TBL] [Abstract][Full Text] [Related]
19. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI). Boland DD; Collins RN; Payne TE; Waite TD Environ Sci Technol; 2011 Feb; 45(4):1327-33. PubMed ID: 21210678 [TBL] [Abstract][Full Text] [Related]
20. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. Kappler A; Benz M; Schink B; Brune A FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]