BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27028208)

  • 1. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.
    Suyama K; Taniguchi S; Tatsubo D; Maeda I; Nose T
    J Pept Sci; 2016 Apr; 22(4):236-43. PubMed ID: 27028208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Phenylalanine-Containing Elastin-Derived Peptides Exhibiting Highly Potent Self-Assembling Capability.
    Maeda I; Taniguchi S; Watanabe N; Inoue A; Yamasaki Y; Nose T
    Protein Pept Lett; 2015; 22(10):934-9. PubMed ID: 26310504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepwise Mechanism of Temperature-Dependent Coacervation of the Elastin-like Peptide Analogue Dimer, (C(WPGVG)
    Tatsubo D; Suyama K; Miyazaki M; Maeda I; Nose T
    Biochemistry; 2018 Mar; 57(10):1582-1590. PubMed ID: 29388768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural requirements essential for elastin coacervation: favorable spatial arrangements of valine ridges on the three-dimensional structure of elastin-derived polypeptide (VPGVG)n.
    Maeda I; Fukumoto Y; Nose T; Shimohigashi Y; Nezu T; Terada Y; Kodama H; Kaibara K; Okamoto K
    J Pept Sci; 2011 Nov; 17(11):735-43. PubMed ID: 21919131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between coacervation property and secondary structure of synthetic peptides, Ile-containing elastin-derived pentapeptide repeats.
    Maeda I; Taniguchi S; Ebina J; Watanabe N; Hattori T; Nose T
    Protein Pept Lett; 2013 Aug; 20(8):905-10. PubMed ID: 23409853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Self-Aggregation Properties of Linear Elastin-Derived Short Peptides by Simple Cyclization: Strong Self-Aggregation Properties of Cyclo[FPGVG]
    Suyama K; Tatsubo D; Iwasaki W; Miyazaki M; Kiyota Y; Takahashi I; Maeda I; Nose T
    Biomacromolecules; 2018 Aug; 19(8):3201-3211. PubMed ID: 29932654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.
    Taniguchi S; Watanabe N; Nose T; Maeda I
    J Pept Sci; 2016 Jan; 22(1):36-42. PubMed ID: 26662843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depsipeptide analogues of elastin repeating sequences: conformational analysis.
    Arad O; Goodman M
    Biopolymers; 1990; 29(12-13):1652-68. PubMed ID: 2386811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering.
    Reiersen H; Clarke AR; Rees AR
    J Mol Biol; 1998; 283(1):255-64. PubMed ID: 9761688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple Regulation of the Self-Assembling Ability by Multimerization of Elastin-Derived Peptide (FPGVG)
    Suyama K; Mawatari M; Tatsubo D; Maeda I; Nose T
    ACS Omega; 2021 Mar; 6(8):5705-5716. PubMed ID: 33681610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coacervation properties in sequential polypeptide models of elastin. Synthesis of H-(Ala-Pro-Gly-Gly)n-Val-OMe and H-(Ala-Pro-Gly-Val-Gly)n-Val-OMe.
    Rapaka RS; Okamoto K; Urry DW
    Int J Pept Protein Res; 1978 Aug; 12(2):81-92. PubMed ID: 711374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible customization of the self-assembling abilities of short elastin-like peptide Fn analogs by substituting N-terminal amino acids.
    Suyama K; Shimizu M; Maeda I; Nose T
    Biopolymers; 2022 Oct; 113(10):e23521. PubMed ID: 35830538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides.
    Kim W; McMillan RA; Snyder JP; Conticello VP
    J Am Chem Soc; 2005 Dec; 127(51):18121-32. PubMed ID: 16366565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of truncated elastin-like peptide analogues with improved temperature-response and self-assembling properties.
    Sumiyoshi S; Suyama K; Tanaka N; Andoh T; Nagata A; Tomohara K; Taniguchi S; Maeda I; Nose T
    Sci Rep; 2022 Nov; 12(1):19414. PubMed ID: 36371418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LCST Behavior is Manifested in a Single Molecule: Elastin-Like polypeptide (VPGVG)n.
    Zhao B; Li NK; Yingling YG; Hall CK
    Biomacromolecules; 2016 Jan; 17(1):111-8. PubMed ID: 26595324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of the conformational behavior of a representative elastin building block: Boc-Gly-Val-Gly-Gly-Leu-OMe.
    Lelj F; Tamburro AM; Villani V; Grimaldi P; Guantieri V
    Biopolymers; 1992 Feb; 32(2):161-72. PubMed ID: 1637990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunochemical and immunohistochemical studies on distribution of elastin fibres in human atherosclerotic lesions using a polyclonal antibody to elastin-derived hexapeptide repeat.
    Maeda I; Kishita S; Yamamoto Y; Arima K; Ideta K; Meng J; Sakata N; Okamoto K
    J Biochem; 2007 Nov; 142(5):627-31. PubMed ID: 17951286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coacervation of sequential polypeptide models of tropoelastin. Synthesis of H-(Val-Ala-Pro-Gly)n-Val-OMe and H-(Val-Pro-Gly-Gly)n-Val-OMe.
    Rapaka RS; Urry DW
    Int J Pept Protein Res; 1978 Feb; 11(2):97-108. PubMed ID: 640777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide hairpins with strand segments containing alpha- and beta-amino acid residues: cross-strand aromatic interactions of facing Phe residues.
    Roy RS; Gopi HN; Raghothama S; Gilardi RD; Karle IL; Balaram P
    Biopolymers; 2005; 80(6):787-99. PubMed ID: 15895435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.