These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27028213)

  • 1. Physically Transient Resistive Switching Memory Based on Silk Protein.
    Wang H; Zhu B; Ma X; Hao Y; Chen X
    Small; 2016 May; 12(20):2715-9. PubMed ID: 27028213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin.
    Wang H; Zhu B; Wang H; Ma X; Hao Y; Chen X
    Small; 2016 Jul; 12(25):3360-5. PubMed ID: 27315137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix.
    Gogurla N; Mondal SP; Sinha AK; Katiyar AK; Banerjee W; Kundu SC; Ray SK
    Nanotechnology; 2013 Aug; 24(34):345202. PubMed ID: 23912245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-Layer Protein for Resistive Switching and Flexible Nonvolatile Memory Device.
    Moudgil A; Kalyani N; Sinsinbar G; Das S; Mishra P
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4866-4873. PubMed ID: 29308639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires.
    Cagli C; Nardi F; Harteneck B; Tan Z; Zhang Y; Ielmini D
    Small; 2011 Oct; 7(20):2899-905. PubMed ID: 21874659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable Natural Pectin-Based Flexible Multilevel Resistive Switching Memory for Transient Electronics.
    Xu J; Zhao X; Wang Z; Xu H; Hu J; Ma J; Liu Y
    Small; 2019 Jan; 15(4):e1803970. PubMed ID: 30500108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets.
    Brenckle MA; Cheng H; Hwang S; Tao H; Paquette M; Kaplan DL; Rogers JA; Huang Y; Omenetto FG
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19870-5. PubMed ID: 26305434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid nanoimprinting of doped silk films for enhanced fluorescent emission.
    Mondia JP; Amsden JJ; Lin D; Negro LD; Kaplan DL; Omenetto FG
    Adv Mater; 2010 Nov; 22(41):4596-9. PubMed ID: 20859936
    [No Abstract]   [Full Text] [Related]  

  • 9. A Hierarchically Encoded Data Storage Device with Controlled Transiency.
    Wei S; Jiang J; Sun L; Li J; Tao TH; Zhou Z
    Adv Mater; 2022 May; 34(20):e2201035. PubMed ID: 35293037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral analysis of induced color change on periodically nanopatterned silk films.
    Amsden JJ; Perry H; Boriskina SV; Gopinath A; Kaplan DL; Dal Negro L; Omenetto FG
    Opt Express; 2009 Nov; 17(23):21271-9. PubMed ID: 19997366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible and fully biodegradable resistance random access memory based on a gelatin dielectric.
    Liu S; Dong S; Wang X; Shi L; Xu H; Huang S; Luo J
    Nanotechnology; 2020 Apr; 31(25):255204. PubMed ID: 32101798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistive Switching in Al/Al2O3/TiO2/Al/PES Flexible Device for Nonvolatile Memory Application.
    Lin CC; Lee WY; Lee HT
    J Nanosci Nanotechnol; 2016 May; 16(5):4820-4. PubMed ID: 27483828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physically Transient, Flexible, and Resistive Random Access Memory Based on Silver Ions and Egg Albumen Composites.
    Wang L; Zhang Y; Zhang P; Wen D
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure.
    Li Y; Yuan P; Fu L; Li R; Gao X; Tao C
    Nanotechnology; 2015 Oct; 26(39):391001. PubMed ID: 26358828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient Resistive Switching Devices Made from Egg Albumen Dielectrics and Dissolvable Electrodes.
    He X; Zhang J; Wang W; Xuan W; Wang X; Zhang Q; Smith CG; Luo J
    ACS Appl Mater Interfaces; 2016 May; 8(17):10954-60. PubMed ID: 27052437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly flexible and lightweight organic solar cells on biocompatible silk fibroin.
    Liu Y; Qi N; Song T; Jia M; Xia Z; Yuan Z; Yuan W; Zhang KQ; Sun B
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20670-5. PubMed ID: 25405590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.
    Kim DH; Viventi J; Amsden JJ; Xiao J; Vigeland L; Kim YS; Blanco JA; Panilaitis B; Frechette ES; Contreras D; Kaplan DL; Omenetto FG; Huang Y; Hwang KC; Zakin MR; Litt B; Rogers JA
    Nat Mater; 2010 Jun; 9(6):511-7. PubMed ID: 20400953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistive switching memory based on bioinspired natural solid polymer electrolytes.
    Raeis Hosseini N; Lee JS
    ACS Nano; 2015 Jan; 9(1):419-26. PubMed ID: 25513838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly flexible and degradable memory electronics comprised of all-biocompatible materials.
    Jiang T; Meng X; Zhou Z; Wu Y; Tian Z; Liu Z; Lu G; Eginlidil M; Yu HD; Liu J; Huang W
    Nanoscale; 2021 Jan; 13(2):724-729. PubMed ID: 33393574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.