These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 27028356)
1. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells. Gu Q; Tomaskovic-Crook E; Lozano R; Chen Y; Kapsa RM; Zhou Q; Wallace GG; Crook JM Adv Healthc Mater; 2016 Jun; 5(12):1429-38. PubMed ID: 27028356 [TBL] [Abstract][Full Text] [Related]
2. Engineering Human Neural Tissue by 3D Bioprinting. Gu Q; Tomaskovic-Crook E; Wallace GG; Crook JM Methods Mol Biol; 2018; 1758():129-138. PubMed ID: 29679327 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Gu Q; Tomaskovic-Crook E; Wallace GG; Crook JM Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28544655 [TBL] [Abstract][Full Text] [Related]
4. Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation. Tomaskovic-Crook E; Zhang P; Ahtiainen A; Kaisvuo H; Lee CY; Beirne S; Aqrawe Z; Svirskis D; Hyttinen J; Wallace GG; Travas-Sejdic J; Crook JM Adv Healthc Mater; 2019 Aug; 8(15):e1900425. PubMed ID: 31168967 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
6. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs. Ho L; Hsu SH Acta Biomater; 2018 Apr; 70():57-70. PubMed ID: 29425719 [TBL] [Abstract][Full Text] [Related]
7. 3D Bioprinting Electrically Conductive Bioink with Human Neural Stem Cells for Human Neural Tissues. Tomaskovic-Crook E; Crook JM Methods Mol Biol; 2020; 2140():159-170. PubMed ID: 32207111 [TBL] [Abstract][Full Text] [Related]
8. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
9. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649 [TBL] [Abstract][Full Text] [Related]
10. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process. Kim YB; Lee H; Kim GH ACS Appl Mater Interfaces; 2016 Nov; 8(47):32230-32240. PubMed ID: 27933843 [TBL] [Abstract][Full Text] [Related]
11. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink. Choi YJ; Kim TG; Jeong J; Yi HG; Park JW; Hwang W; Cho DW Adv Healthc Mater; 2016 Oct; 5(20):2636-2645. PubMed ID: 27529631 [TBL] [Abstract][Full Text] [Related]
12. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
13. Bioink Composition and Printing Parameters for 3D Modeling Neural Tissue. Fantini V; Bordoni M; Scocozza F; Conti M; Scarian E; Carelli S; Di Giulio AM; Marconi S; Pansarasa O; Auricchio F; Cereda C Cells; 2019 Aug; 8(8):. PubMed ID: 31387210 [TBL] [Abstract][Full Text] [Related]
15. Lipid-Bilayer-Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions. Zhou L; Wolfes AC; Li Y; Chan DCW; Ko H; Szele FG; Bayley H Adv Mater; 2020 Aug; 32(31):e2002183. PubMed ID: 32537827 [TBL] [Abstract][Full Text] [Related]
16. 3D Printing of Neural Tissues Derived from Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink. Abelseth E; Abelseth L; De la Vega L; Beyer ST; Wadsworth SJ; Willerth SM ACS Biomater Sci Eng; 2019 Jan; 5(1):234-243. PubMed ID: 33405866 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional differentiation of human pluripotent stem cell-derived neural precursor cells using tailored porous polymer scaffolds. Murphy AR; Haynes JM; Laslett AL; Cameron NR; O'Brien CM Acta Biomater; 2020 Jan; 101():102-116. PubMed ID: 31610339 [TBL] [Abstract][Full Text] [Related]
18. Mechanically Tunable Bioink for 3D Bioprinting of Human Cells. Forget A; Blaeser A; Miessmer F; Köpf M; Campos DFD; Voelcker NH; Blencowe A; Fischer H; Shastri VP Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28731220 [TBL] [Abstract][Full Text] [Related]
19. Neural stem cell delivery using brain-derived tissue-specific bioink for recovering from traumatic brain injury. Bae M; Hwang DW; Ko MK; Jin Y; Shin WJ; Park W; Chae S; Lee HJ; Jang J; Yi HG; Lee DS; Cho DW Biofabrication; 2021 Oct; 13(4):. PubMed ID: 34551404 [TBL] [Abstract][Full Text] [Related]
20. 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Zhu W; George JK; Sorger VJ; Grace Zhang L Biofabrication; 2017 Apr; 9(2):025002. PubMed ID: 28349897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]