BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27028649)

  • 1. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation.
    Li W; Sigley J; Pieters M; Helms CC; Nagaswami C; Weisel JW; Guthold M
    Biophys J; 2016 Mar; 110(6):1400-10. PubMed ID: 27028649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonuniform Internal Structure of Fibrin Fibers: Protein Density and Bond Density Strongly Decrease with Increasing Diameter.
    Li W; Sigley J; Baker SR; Helms CC; Kinney MT; Pieters M; Brubaker PH; Cubcciotti R; Guthold M
    Biomed Res Int; 2017; 2017():6385628. PubMed ID: 29130043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-α Cross-links increase fibrin fiber elasticity and stiffness.
    Helms CC; Ariëns RA; Uitte de Willige S; Standeven KF; Guthold M
    Biophys J; 2012 Jan; 102(1):168-75. PubMed ID: 22225811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycaemic control improves fibrin network characteristics in type 2 diabetes - a purified fibrinogen model.
    Pieters M; Covic N; van der Westhuizen FH; Nagaswami C; Baras Y; Toit Loots D; Jerling JC; Elgar D; Edmondson KS; van Zyl DG; Rheeder P; Weisel JW
    Thromb Haemost; 2008 Apr; 99(4):691-700. PubMed ID: 18392327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factor XIII stiffens fibrin clots by causing fiber compaction.
    Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2014 Oct; 12(10):1687-96. PubMed ID: 25142383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of glycaemic control on fibrin network structure of type 2 diabetic subjects.
    Pieters M; Covic N; Loots du T; van der Westhuizen FH; van Zyl DG; Rheeder P; Jerling JC; Weisel JW
    Thromb Haemost; 2006 Nov; 96(5):623-9. PubMed ID: 17080220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The elasticity of an individual fibrin fiber in a clot.
    Collet JP; Shuman H; Ledger RE; Lee S; Weisel JW
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9133-7. PubMed ID: 15967976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation and Validation of Maximum Absorbance Data Obtained from Turbidimetry Analysis of Plasma Clots.
    Pieters M; Guthold M; Nunes CM; de Lange Z
    Thromb Haemost; 2020 Jan; 120(1):44-54. PubMed ID: 31752041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citrullinated fibrinogen forms densely packed clots with decreased permeability.
    Varjú I; Tóth E; Farkas ÁZ; Farkas VJ; Komorowicz E; Feller T; Kiss B; Kellermayer MZ; Szabó L; Wacha A; Bóta A; Longstaff C; Kolev K
    J Thromb Haemost; 2022 Dec; 20(12):2862-2872. PubMed ID: 36083779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
    Maksudov F; Daraei A; Sesha A; Marx KA; Guthold M; Barsegov V
    Acta Biomater; 2021 Dec; 136():327-342. PubMed ID: 34606991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3.
    Guthold M; Liu W; Stephens B; Lord ST; Hantgan RR; Erie DA; Taylor RM; Superfine R
    Biophys J; 2004 Dec; 87(6):4226-36. PubMed ID: 15465869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution visualization of fibrinogen molecules and fibrin fibers with atomic force microscopy.
    Yermolenko IS; Lishko VK; Ugarova TP; Magonov SN
    Biomacromolecules; 2011 Feb; 12(2):370-9. PubMed ID: 21192636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic behavior and platelet retraction in low- and high-density fibrin gels.
    Wufsus AR; Rana K; Brown A; Dorgan JR; Liberatore MW; Neeves KB
    Biophys J; 2015 Jan; 108(1):173-83. PubMed ID: 25564864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots.
    Weisel JW; Veklich Y; Gorkun O
    J Mol Biol; 1993 Jul; 232(1):285-97. PubMed ID: 8331664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does topology drive fiber polymerization?
    Huang L; Hsiao JP; Powierza C; Taylor RM; Lord ST
    Biochemistry; 2014 Dec; 53(49):7824-34. PubMed ID: 25419972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanical properties of single fibrin fibers.
    Liu W; Carlisle CR; Sparks EA; Guthold M
    J Thromb Haemost; 2010 May; 8(5):1030-6. PubMed ID: 20088938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A monoclonal antibody to the fibrinogen gamma-chain alters fibrin clot structure and its properties by producing short, thin fibers arranged in bundles.
    Scheiner T; Jirousková M; Nagaswami C; Coller BS; Weisel JW
    J Thromb Haemost; 2003 Dec; 1(12):2594-602. PubMed ID: 14675095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thrombin and fibrinogen γ' impact clot structure by marked effects on intrafibrillar structure and protofibril packing.
    Domingues MM; Macrae FL; Duval C; McPherson HR; Bridge KI; Ajjan RA; Ridger VC; Connell SD; Philippou H; Ariëns RA
    Blood; 2016 Jan; 127(4):487-95. PubMed ID: 26608329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.