These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27028724)

  • 21. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.
    Belder D; Deege A; Kohler F; Ludwig M
    Electrophoresis; 2002 Oct; 23(20):3567-73. PubMed ID: 12412126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple approach for an optically transparent nanochannel device prototype.
    Liang F; Ju A; Qiao Y; Guo J; Feng H; Li J; Lu N; Tu J; Lu Z
    Lab Chip; 2016 Mar; 16(6):984-91. PubMed ID: 26891717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid prototyping of microfluidic devices with a wax printer.
    Kaigala GV; Ho S; Penterman R; Backhouse CJ
    Lab Chip; 2007 Mar; 7(3):384-7. PubMed ID: 17330171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates.
    Wlodarczyk KL; Carter RM; Jahanbakhsh A; Lopes AA; Mackenzie MD; Maier RRJ; Hand DP; Maroto-Valer MM
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic chip-capillary electrophoresis device for the determination of urinary metabolites and proteins.
    Ruige W; Fung YS
    Bioanalysis; 2015; 7(7):907-22. PubMed ID: 25932524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.
    Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC
    Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cost-effective microfabrication of sub-micron-depth channels by femto-laser anti-stiction texturing.
    Karimi S; Mehrdel P; Casals-Terré J; Farré-Llados J
    Biofabrication; 2020 Feb; 12(2):025021. PubMed ID: 31891916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection.
    Guijt RM; Baltussen E; van der Steen G; Schasfoort RB; Schlautmann S; Billiet HA; Frank J; van Dedem GW; van den Berg A
    Electrophoresis; 2001 Jan; 22(2):235-41. PubMed ID: 11288890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.
    Tsai YC; Jen HP; Lin KW; Hsieh YZ
    J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.
    Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K
    Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic devices obtained by thermal toner transferring on glass substrate.
    do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA
    Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving.
    Moreira Gabriel EF; Tomazelli Coltro WK; Garcia CD
    Electrophoresis; 2014 Aug; 35(16):2325-32. PubMed ID: 25113407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions.
    Deng NN; Meng ZJ; Xie R; Ju XJ; Mou CL; Wang W; Chu LY
    Lab Chip; 2011 Dec; 11(23):3963-9. PubMed ID: 22025190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective Trapping of DNA Using Glass Microcapillaries.
    Rempfer G; Ehrhardt S; Laohakunakorn N; Davies GB; Keyser UF; Holm C; de Graaf J
    Langmuir; 2016 Aug; 32(33):8525-32. PubMed ID: 27479470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.
    Fogarty BA; Heppert KE; Cory TJ; Hulbutta KR; Martin RS; Lunte SM
    Analyst; 2005 Jun; 130(6):924-30. PubMed ID: 15912242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.