BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27028886)

  • 1. Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria.
    Burbaud S; Laval F; Lemassu A; Daffé M; Guilhot C; Chalut C
    Cell Chem Biol; 2016 Feb; 23(2):278-289. PubMed ID: 27028886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The final assembly of trehalose polyphleates takes place within the outer layer of the mycobacterial cell envelope.
    Thouvenel L; Prevot G; Chiaradia L; Parra J; Mouton-Barbosa E; Locard-Paulet M; Marcoux J; Tropis M; Burlet-Schiltz O; Daffé M; Guilhot C; Etienne G; Chalut C
    J Biol Chem; 2020 Aug; 295(32):11184-11194. PubMed ID: 32554804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three pathways for trehalose biosynthesis in mycobacteria.
    De Smet KAL; Weston A; Brown IN; Young DB; Robertson BD
    Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():199-208. PubMed ID: 10658666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging Mycobacterial Trehalose Glycolipids.
    Kamariza M; Shieh P; Bertozzi CR
    Methods Enzymol; 2018; 598():355-369. PubMed ID: 29306442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New pyruvylated, glycosylated acyltrehaloses from Mycobacterium smegmatis strains, and their implications for phage resistance in mycobacteria.
    Besra GS; Khoo KH; Belisle JT; McNeil MR; Morris HR; Dell A; Brennan PJ
    Carbohydr Res; 1994 Jan; 251():99-114. PubMed ID: 8149383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutically useful mycobacteriophages BPs and Muddy require trehalose polyphleates.
    Wetzel KS; Illouz M; Abad L; Aull HG; Russell DA; Garlena RA; Cristinziano M; Malmsheimer S; Chalut C; Hatfull GF; Kremer L
    Nat Microbiol; 2023 Sep; 8(9):1717-1731. PubMed ID: 37644325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of mycobacterium glycopeptidolipids from comparative genomics perspective.
    Pang L; Tian X; Pan W; Xie J
    J Cell Biochem; 2013 Aug; 114(8):1705-13. PubMed ID: 23444081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Mycobacterium tuberculosis Sulfolipid-3 Analogues and Total Synthesis of the Tetraacylated Trehaloglycolipid of Mycobacterium paraffinicum.
    Sarpe VA; Jana S; Kulkarni SS
    Org Lett; 2016 Jan; 18(1):76-9. PubMed ID: 26652194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry of the lyxose-containing mycobacteriophage receptors of Mycobacterium phlei/Mycobacterium smegmatis.
    Khoo KH; Suzuki R; Dell A; Morris HR; McNeil MR; Brennan PJ; Besra GS
    Biochemistry; 1996 Sep; 35(36):11812-9. PubMed ID: 8794763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoenzymatic synthesis of trehalose analogues: rapid access to chemical probes for investigating mycobacteria.
    Urbanek BL; Wing DC; Haislop KS; Hamel CJ; Kalscheuer R; Woodruff PJ; Swarts BM
    Chembiochem; 2014 Sep; 15(14):2066-70. PubMed ID: 25139066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies of antigenic glycolipids of mycobacteria related to the leprosy bacillus.
    Minnikin DE; Ridell M; Wallerström G; Besra GS; Parlett JH; Bolton RC; Magnusson M
    Acta Leprol; 1989; 7 Suppl 1():51-4. PubMed ID: 2504005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae.
    Ripoll F; Deshayes C; Pasek S; Laval F; Beretti JL; Biet F; Risler JL; Daffé M; Etienne G; Gaillard JL; Reyrat JM
    BMC Genomics; 2007 May; 8():114. PubMed ID: 17490474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the mycobacterial trehalome with bioorthogonal chemistry.
    Swarts BM; Holsclaw CM; Jewett JC; Alber M; Fox DM; Siegrist MS; Leary JA; Kalscheuer R; Bertozzi CR
    J Am Chem Soc; 2012 Oct; 134(39):16123-6. PubMed ID: 22978752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights on trehalose: a multifunctional molecule.
    Elbein AD; Pan YT; Pastuszak I; Carroll D
    Glycobiology; 2003 Apr; 13(4):17R-27R. PubMed ID: 12626396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the fucosylation pathway in the biosynthesis of glycopeptidolipids from Mycobacterium avium complex.
    Miyamoto Y; Mukai T; Maeda Y; Nakata N; Kai M; Naka T; Yano I; Makino M
    J Bacteriol; 2007 Aug; 189(15):5515-22. PubMed ID: 17526707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor mincle.
    Feinberg H; Jégouzo SA; Rowntree TJ; Guan Y; Brash MA; Taylor ME; Weis WI; Drickamer K
    J Biol Chem; 2013 Oct; 288(40):28457-65. PubMed ID: 23960080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights on the evolution of trehalose biosynthesis.
    Avonce N; Mendoza-Vargas A; Morett E; Iturriaga G
    BMC Evol Biol; 2006 Dec; 6():109. PubMed ID: 17178000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revised structure of a trehalose-containing immunoreactive glycolipid of Mycobacterium tuberculosis.
    Lemassu A; Lanéelle MA; Daffé M
    FEMS Microbiol Lett; 1991 Mar; 62(2-3):171-5. PubMed ID: 1904042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of cell envelope-associated phenolic glycolipids in Mycobacterium marinum.
    Vergnolle O; Chavadi SS; Edupuganti UR; Mohandas P; Chan C; Zeng J; Kopylov M; Angelo NG; Warren JD; Soll CE; Quadri LE
    J Bacteriol; 2015 Mar; 197(6):1040-50. PubMed ID: 25561717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular biology of mycobacterial trehalose in the quest for advanced tuberculosis therapies.
    Nobre A; Alarico S; Maranha A; Mendes V; Empadinhas N
    Microbiology (Reading); 2014 Aug; 160(Pt 8):1547-1570. PubMed ID: 24858083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.