BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 27028897)

  • 1. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.
    Gupta A; Adami C
    PLoS Genet; 2016 Mar; 12(3):e1005960. PubMed ID: 27028897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limits to detecting epistasis in the fitness landscape of HIV.
    Biswas A; Haldane A; Levy RM
    PLoS One; 2022; 17(1):e0262314. PubMed ID: 35041711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifting Fitness and Epistatic Landscapes Reflect Trade-offs along an Evolutionary Pathway.
    Steinberg B; Ostermeier M
    J Mol Biol; 2016 Jul; 428(13):2730-43. PubMed ID: 27173379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epistasis among deleterious mutations in the HIV-1 protease.
    Parera M; Perez-Alvarez N; Clotet B; Martínez MA
    J Mol Biol; 2009 Sep; 392(2):243-50. PubMed ID: 19607838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epistasis as a determinant of the HIV-1 protease's robustness to mutation.
    Capel E; Parera M; Martinez MA
    PLoS One; 2014; 9(12):e116301. PubMed ID: 25551558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection biases the prevalence and type of epistasis along adaptive trajectories.
    Draghi JA; Plotkin JB
    Evolution; 2013 Nov; 67(11):3120-31. PubMed ID: 24151997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease.
    Zhang TH; Dai L; Barton JP; Du Y; Tan Y; Pang W; Chakraborty AK; Lloyd-Smith JO; Sun R
    PLoS Genet; 2020 Oct; 16(10):e1009009. PubMed ID: 33085662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid adaptation of recombining populations on tunable fitness landscapes.
    Li J; Amado A; Bank C
    Mol Ecol; 2024 May; 33(10):e16900. PubMed ID: 36855836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of epistatic gene interactions in the response to selection and the evolution of evolvability.
    Carter AJ; Hermisson J; Hansen TF
    Theor Popul Biol; 2005 Nov; 68(3):179-96. PubMed ID: 16122771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region.
    da Silva J; Coetzer M; Nedellec R; Pastore C; Mosier DE
    Genetics; 2010 May; 185(1):293-303. PubMed ID: 20157005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic complementation fosters evolvability in complex fitness landscapes.
    Segredo-Otero E; Sanjuán R
    Sci Rep; 2023 Jan; 13(1):662. PubMed ID: 36635310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of macroscopic epistasis on long-term evolutionary dynamics.
    Good BH; Desai MM
    Genetics; 2015 Jan; 199(1):177-90. PubMed ID: 25395665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for positive epistasis in HIV-1.
    Bonhoeffer S; Chappey C; Parkin NT; Whitcomb JM; Petropoulos CJ
    Science; 2004 Nov; 306(5701):1547-50. PubMed ID: 15567861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombination accelerates adaptation on a large-scale empirical fitness landscape in HIV-1.
    Moradigaravand D; Kouyos R; Hinkley T; Haddad M; Petropoulos CJ; Engelstädter J; Bonhoeffer S
    PLoS Genet; 2014 Jun; 10(6):e1004439. PubMed ID: 24967626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation.
    Gros PA; Le Nagard H; Tenaillon O
    Genetics; 2009 May; 182(1):277-93. PubMed ID: 19279327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution. Epistasis in RNA viruses.
    Michalakis Y; Roze D
    Science; 2004 Nov; 306(5701):1492-3. PubMed ID: 15567846
    [No Abstract]   [Full Text] [Related]  

  • 18. Detecting epistasis from an ensemble of adapting populations.
    McCandlish DM; Otwinowski J; Plotkin JB
    Evolution; 2015 Sep; 69(9):2359-70. PubMed ID: 26194030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 protease catalytic efficiency effects caused by random single amino acid substitutions.
    Parera M; Fernàndez G; Clotet B; Martínez MA
    Mol Biol Evol; 2007 Feb; 24(2):382-7. PubMed ID: 17090696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the complexity of the HIV-1 fitness landscape.
    Kouyos RD; Leventhal GE; Hinkley T; Haddad M; Whitcomb JM; Petropoulos CJ; Bonhoeffer S
    PLoS Genet; 2012; 8(3):e1002551. PubMed ID: 22412384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.