These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 27029046)

  • 21. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime.
    Bonebrake TC; Syphard AD; Franklin J; Anderson KE; Akçakaya HR; Mizerek T; Winchell C; Regan HM
    Conserv Biol; 2014 Aug; 28(4):1057-67. PubMed ID: 24606578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting faunal fire responses in heterogeneous landscapes: the role of habitat structure.
    Swan M; Christie F; Sitters H; York A; Di Stefano J
    Ecol Appl; 2015 Dec; 25(8):2293-305. PubMed ID: 26910956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating satellite imagery with simulation modeling to improve burn severity mapping.
    Karau EC; Sikkink PG; Keane RE; Dillon GK
    Environ Manage; 2014 Jul; 54(1):98-111. PubMed ID: 24817334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression.
    Parks SA; Holsinger LM; Miller C; Nelson CR
    Ecol Appl; 2015 Sep; 25(6):1478-92. PubMed ID: 26552258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of weed-management burning on reptile assemblages in Australian tropical savannas.
    Valentine LE; Schwarzkopf L
    Conserv Biol; 2009 Feb; 23(1):103-13. PubMed ID: 18950473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survey design for precise fire management conservation targets.
    Sitters H; Di Stefano J; Wills T; Swan M; York A
    Ecol Appl; 2018 Jan; 28(1):35-45. PubMed ID: 28901043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of anthropogenic fire history on savanna vegetation in northeastern Namibia.
    Sheuyange A; Oba G; Weladji RB
    J Environ Manage; 2005 May; 75(3):189-98. PubMed ID: 15829362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investing in rangeland restoration in the Arid West, USA: countering the effects of an invasive weed on the long-term fire cycle.
    Epanchin-Niell R; Englin J; Nalle D
    J Environ Manage; 2009; 91(2):370-9. PubMed ID: 19781845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems.
    Syphard AD; Radeloff VC; Hawbaker TJ; Stewart SI
    Conserv Biol; 2009 Jun; 23(3):758-69. PubMed ID: 22748094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India.
    Prasad VK; Badarinath KV; Eaturu A
    J Environ Manage; 2008 Jan; 86(1):1-13. PubMed ID: 17275159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assisting Australian indigenous resource management and sustainable utilization of species through the use of GIS and environmental modeling techniques.
    Gorman J; Pearson D; Whitehead P
    J Environ Manage; 2008 Jan; 86(1):104-13. PubMed ID: 17303315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides.
    Holz A; Wood SW; Veblen TT; Bowman DM
    Glob Chang Biol; 2015 Jan; 21(1):445-58. PubMed ID: 25044347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of remote and in situ information to the management of wetlands in Poland.
    Dabrowska-Zielinska K; Gruszczynska M; Lewinski S; Hoscilo A; Bojanowski J
    J Environ Manage; 2009 May; 90(7):2261-9. PubMed ID: 18423845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergence of indigenous vegetation classifications through integration of traditional ecological knowledge and remote sensing analyses.
    Naidoo R; Hill K
    Environ Manage; 2006 Sep; 38(3):377-87. PubMed ID: 16832592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping of risk prone areas of kala-azar (Visceral leishmaniasis) in parts of Bihar State, India: an RS and GIS approach.
    Sudhakar S; Srinivas T; Palit A; Kar SK; Battacharya SK
    J Vector Borne Dis; 2006 Sep; 43(3):115-22. PubMed ID: 17024860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Satellite-based studies on large-scale vegetation changes in China.
    Zhao X; Zhou D; Fang J
    J Integr Plant Biol; 2012 Oct; 54(10):713-28. PubMed ID: 22974506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating the biomass of unevenly distributed aquatic vegetation in a lake using the normalized water-adjusted vegetation index and scale transformation method.
    Gao Y; Gao J; Wang J; Wang S; Li Q; Zhai S; Zhou Y
    Sci Total Environ; 2017 Dec; 601-602():998-1007. PubMed ID: 28586747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyric herbivory: rewilding landscapes through the recoupling of fire and grazing.
    Fuhlendorf SD; Engle DM; Kerby J; Hamilton R
    Conserv Biol; 2009 Jun; 23(3):588-98. PubMed ID: 19183203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salinity monitoring in Western Australia using remotely sensed and other spatial data.
    Furby S; Caccetta P; Wallace J
    J Environ Qual; 2010; 39(1):16-25. PubMed ID: 20048290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.