These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 27029066)
1. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes. Bae K; Lee S; Jang DY; Kim HJ; Lee H; Shin D; Son JW; Shim JH ACS Appl Mater Interfaces; 2016 Apr; 8(14):9097-103. PubMed ID: 27029066 [TBL] [Abstract][Full Text] [Related]
2. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Bae K; Jang DY; Choi HJ; Kim D; Hong J; Kim BK; Lee JH; Son JW; Shim JH Nat Commun; 2017 Feb; 8():14553. PubMed ID: 28230080 [TBL] [Abstract][Full Text] [Related]
3. Multiple Effects of Iron and Nickel Additives on the Properties of Proton Conducting Yttrium-Doped Barium Cerate-Zirconate Electrolytes for High-Performance Solid Oxide Fuel Cells. Liu Z; Chen M; Zhou M; Cao D; Liu P; Wang W; Liu M; Huang J; Shao J; Liu J ACS Appl Mater Interfaces; 2020 Nov; 12(45):50433-50445. PubMed ID: 33108727 [TBL] [Abstract][Full Text] [Related]
4. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction. Su C; Shao Z; Lin Y; Wu Y; Wang H Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505 [TBL] [Abstract][Full Text] [Related]
5. Improved mechanical strength, proton conductivity and power density in an 'all-protonic' ceramic fuel cell at intermediate temperature. Azad AK; Abdalla AM; Afif A; Azad A; Afroze S; Idris AC; Park JY; Saqib M; Radenahmad N; Hossain S; Elius IB; Al-Mamun M; Zaini J; Al-Hinai A; Reza MS; Irvine JTS Sci Rep; 2021 Sep; 11(1):19382. PubMed ID: 34588598 [TBL] [Abstract][Full Text] [Related]
6. Interfacial Modification for High-Efficient Reversible Protonic Ceramic Cell with a Spin-Coated BaZr Chen J; Lu X; Zhang J; Zhao X; Liu W; Zhang J; Shao T; Zhao Y; Li Y ACS Appl Mater Interfaces; 2024 Oct; 16(39):52200-52209. PubMed ID: 39305270 [TBL] [Abstract][Full Text] [Related]
7. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer. Li Y; Wang S; Su PC Sci Rep; 2016 Feb; 6():22369. PubMed ID: 26928192 [TBL] [Abstract][Full Text] [Related]
15. Effect of NiO Addition on the Sintering and Electrochemical Properties of BaCe Peng C; Zhao B; Meng X; Ye X; Luo T; Xin X; Wen Z Membranes (Basel); 2024 Feb; 14(3):. PubMed ID: 38535280 [TBL] [Abstract][Full Text] [Related]
16. Influence of Low Sintering Temperature on BaCe Rafique M; Safdar N; Irshad M; Usman M; Akhtar M; Saleem MW; Abbas MM; Ashour A; Soudagar ME Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629612 [TBL] [Abstract][Full Text] [Related]
17. Detrimental Effect of Sintering Additives on Conducting Ceramics: Yttrium-Doped Barium Zirconate. Han D; Uemura S; Hiraiwa C; Majima M; Uda T ChemSusChem; 2018 Dec; 11(23):4102-4113. PubMed ID: 30221836 [TBL] [Abstract][Full Text] [Related]
18. Optimization of ScSZ/GDC bilayer thin film electrolyte for anodic aluminum oxide supported low temperature solid oxide fuel cells. Cho GY; Kim Y; Hong SW; Yu W; Kim YB; Cha SW Nanotechnology; 2018 Aug; 29(34):345401. PubMed ID: 29708505 [TBL] [Abstract][Full Text] [Related]
19. Nanocrystal Engineering of Thin-Film Yttria-Stabilized Zirconia Electrolytes for Low-Temperature Solid-Oxide Fuel Cells. Ryu S; Choi IW; Kim YJ; Lee S; Jeong W; Yu W; Cho GY; Cha SW ACS Appl Mater Interfaces; 2023 Sep; 15(36):42659-42666. PubMed ID: 37665642 [TBL] [Abstract][Full Text] [Related]
20. In situ fabrication of high-performance Ni-GDC-nanocube core-shell anode for low-temperature solid-oxide fuel cells. Yamamoto K; Qiu N; Ohara S Sci Rep; 2015 Nov; 5():17433. PubMed ID: 26615816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]