These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27029549)

  • 1. Do little interactions get lost in dark random forests?
    Wright MN; Ziegler A; König IR
    BMC Bioinformatics; 2016 Mar; 17():145. PubMed ID: 27029549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening large-scale association study data: exploiting interactions using random forests.
    Lunetta KL; Hayward LB; Segal J; Van Eerdewegh P
    BMC Genet; 2004 Dec; 5():32. PubMed ID: 15588316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNP interaction detection with Random Forests in high-dimensional genetic data.
    Winham SJ; Colby CL; Freimuth RR; Wang X; de Andrade M; Huebner M; Biernacka JM
    BMC Bioinformatics; 2012 Jul; 13():164. PubMed ID: 22793366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations.
    Boulesteix AL; Bender A; Lorenzo Bermejo J; Strobl C
    Brief Bioinform; 2012 May; 13(3):292-304. PubMed ID: 21908865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable selection method for the identification of epistatic models.
    Holzinger ER; Szymczak S; Dasgupta A; Malley J; Li Q; Bailey-Wilson JE
    Pac Symp Biocomput; 2015; 20():195-206. PubMed ID: 25592581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction.
    García-Magariños M; López-de-Ullibarri I; Cao R; Salas A
    Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance measures for epistatic interactions in case-parent trios.
    Schwender H; Bowers K; Fallin MD; Ruczinski I
    Ann Hum Genet; 2011 Jan; 75(1):122-32. PubMed ID: 21118192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying SNPs predictive of phenotype using random forests.
    Bureau A; Dupuis J; Falls K; Lunetta KL; Hayward B; Keith TP; Van Eerdewegh P
    Genet Epidemiol; 2005 Feb; 28(2):171-82. PubMed ID: 15593090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle.
    Yao C; Spurlock DM; Armentano LE; Page CD; VandeHaar MJ; Bickhart DM; Weigel KA
    J Dairy Sci; 2013 Oct; 96(10):6716-29. PubMed ID: 23932129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of SNP epistasis effects of quantitative traits using an extended Kempthorne model.
    Mao Y; London NR; Ma L; Dvorkin D; Da Y
    Physiol Genomics; 2006 Dec; 28(1):46-52. PubMed ID: 16940430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting gene-gene interactions using a permutation-based random forest method.
    Li J; Malley JD; Andrew AS; Karagas MR; Moore JH
    BioData Min; 2016; 9():14. PubMed ID: 27053949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional variable importance for random forests.
    Strobl C; Boulesteix AL; Kneib T; Augustin T; Zeileis A
    BMC Bioinformatics; 2008 Jul; 9():307. PubMed ID: 18620558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases.
    Murk W; DeWan AT
    G3 (Bethesda); 2016 Jul; 6(7):2043-50. PubMed ID: 27185397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling gene-gene interactions using graphical chain models.
    Foraita R; Bammann K; Pigeot I
    Hum Hered; 2008; 65(1):47-56. PubMed ID: 17652960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random forests on distance matrices for imaging genetics studies.
    Sim A; Tsagkrasoulis D; Montana G
    Stat Appl Genet Mol Biol; 2013 Dec; 12(6):757-86. PubMed ID: 24246292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of methods for interpreting random forest models of genetic association in the presence of non-additive interactions.
    Orlenko A; Moore JH
    BioData Min; 2021 Jan; 14(1):9. PubMed ID: 33514397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unbiased split variable selection for random survival forests using maximally selected rank statistics.
    Wright MN; Dankowski T; Ziegler A
    Stat Med; 2017 Apr; 36(8):1272-1284. PubMed ID: 28088842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyses of single marker and pairwise effects of candidate loci for rheumatoid arthritis using logistic regression and random forests.
    Glaser B; Nikolov I; Chubb D; Hamshere ML; Segurado R; Moskvina V; Holmans P
    BMC Proc; 2007; 1 Suppl 1(Suppl 1):S54. PubMed ID: 18466554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of variable importance scores and rankings using statistical learning tools on single-nucleotide polymorphisms and risk factors involved in gene x gene and gene x environment interactions.
    Nicodemus KK; Wang W; Shugart YY
    BMC Proc; 2007; 1 Suppl 1(Suppl 1):S58. PubMed ID: 18466558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data.
    Chen SP; Huang GH
    Stat Appl Genet Mol Biol; 2014 Jun; 13(3):275-97. PubMed ID: 24846958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.