These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 27029607)
1. Diffusion in a Crowded, Rearranging Environment. Jain R; Sebastian KL J Phys Chem B; 2016 Apr; 120(16):3988-92. PubMed ID: 27029607 [TBL] [Abstract][Full Text] [Related]
2. Lévy flight with absorption: A model for diffusing diffusivity with long tails. Jain R; Sebastian KL Phys Rev E; 2017 Mar; 95(3-1):032135. PubMed ID: 28415215 [TBL] [Abstract][Full Text] [Related]
3. Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. Chubynsky MV; Slater GW Phys Rev Lett; 2014 Aug; 113(9):098302. PubMed ID: 25216011 [TBL] [Abstract][Full Text] [Related]
4. Diffusing diffusivity: Rotational diffusion in two and three dimensions. Jain R; Sebastian KL J Chem Phys; 2017 Jun; 146(21):214102. PubMed ID: 28576093 [TBL] [Abstract][Full Text] [Related]
5. Diffusing Diffusivity: Survival in a Crowded Rearranging and Bounded Domain. Jain R; Sebastian KL J Phys Chem B; 2016 Sep; 120(34):9215-22. PubMed ID: 27478982 [TBL] [Abstract][Full Text] [Related]
6. Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? Kwon G; Sung BJ; Yethiraj A J Phys Chem B; 2014 Jul; 118(28):8128-34. PubMed ID: 24779432 [TBL] [Abstract][Full Text] [Related]
7. Smoluchowski diffusion equation for active Brownian swimmers. Sevilla FJ; Sandoval M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052150. PubMed ID: 26066162 [TBL] [Abstract][Full Text] [Related]
8. Brownian motion of a self-propelled particle. ten Hagen B; van Teeffelen S; Löwen H J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563 [TBL] [Abstract][Full Text] [Related]
10. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions. Klett K; Cherstvy AG; Shin J; Sokolov IM; Metzler R Phys Rev E; 2021 Dec; 104(6-1):064603. PubMed ID: 35030844 [TBL] [Abstract][Full Text] [Related]
11. Probability distribution of the time-averaged mean-square displacement of a Gaussian process. Grebenkov DS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031124. PubMed ID: 22060345 [TBL] [Abstract][Full Text] [Related]
13. Universal Evolution of Fickian Non-Gaussian Diffusion in Two- and Three-Dimensional Glass-Forming Liquids. Rusciano F; Pastore R; Greco F Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175578 [TBL] [Abstract][Full Text] [Related]
14. Intermediate scattering function of an anisotropic active Brownian particle. Kurzthaler C; Leitmann S; Franosch T Sci Rep; 2016 Oct; 6():36702. PubMed ID: 27830719 [TBL] [Abstract][Full Text] [Related]
15. Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy. Banks DS; Tressler C; Peters RD; Höfling F; Fradin C Soft Matter; 2016 May; 12(18):4190-203. PubMed ID: 27050290 [TBL] [Abstract][Full Text] [Related]
16. Cusp of Non-Gaussian Density of Particles for a Diffusing Diffusivity Model. Hidalgo-Soria M; Barkai E; Burov S Entropy (Basel); 2021 Feb; 23(2):. PubMed ID: 33671127 [TBL] [Abstract][Full Text] [Related]
17. Confined mobility in biomembranes modeled by early stage Brownian motion. Gmachowski L Math Biosci; 2014 Aug; 254():1-5. PubMed ID: 24909813 [TBL] [Abstract][Full Text] [Related]