These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 27029963)

  • 61. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.
    Ghosh A; Manjunatha R; Kumar R; Mitra S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33775-33785. PubMed ID: 27960357
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dual Dopamine Derived Polydopamine Coated N-Doped Porous Carbon Spheres as a Sulfur Host for High-Performance Lithium-Sulfur Batteries.
    Fan Z; Ding B; Guo H; Shi M; Zhang Y; Dong S; Zhang T; Dou H; Zhang X
    Chemistry; 2019 Aug; 25(45):10710-10717. PubMed ID: 31115068
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 64. MoS
    Li M; Peng H; Pei Y; Wang F; Zhu Y; Shi R; He X; Lei Z; Liu Z; Sun J
    Nanoscale; 2020 Dec; 12(46):23636-23644. PubMed ID: 33216101
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries.
    Sun Z; Zhang J; Yin L; Hu G; Fang R; Cheng HM; Li F
    Nat Commun; 2017 Mar; 8():14627. PubMed ID: 28256504
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries.
    Li Q; Guo J; Zhao J; Wang C; Yan F
    Nanoscale; 2019 Jan; 11(2):647-655. PubMed ID: 30565632
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Host-Configured Lithium-Sulfur Cell Built on 3D Nickel Photonic Crystal with Superior Electrochemical Performances.
    Lin S; Yan Y; Cai Z; Liu L; Hu X
    Small; 2018 May; 14(21):e1800616. PubMed ID: 29667325
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries.
    Ding B; Yuan C; Shen L; Xu G; Nie P; Zhang X
    Chemistry; 2013 Jan; 19(3):1013-9. PubMed ID: 23180622
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency.
    Gao X; Li J; Guan D; Yuan C
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4154-9. PubMed ID: 24555988
    [TBL] [Abstract][Full Text] [Related]  

  • 70. C-S@PANI composite with a polymer spherical network structure for high performance lithium-sulfur batteries.
    Wang J; Yue K; Zhu X; Wang KL; Duan L
    Phys Chem Chem Phys; 2016 Jan; 18(1):261-6. PubMed ID: 26608624
    [TBL] [Abstract][Full Text] [Related]  

  • 71. N-doped CNTs wrapped sulfur-loaded hierarchical porous carbon cathode for Li-sulfur battery studies.
    Nulu A; Nulu V; Sohn KY
    RSC Adv; 2024 Jan; 14(4):2564-2576. PubMed ID: 38226142
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stable cycling of a scalable graphene-encapsulated nanocomposite for lithium-sulfur batteries.
    He G; Hart CJ; Liang X; Garsuch A; Nazar LF
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10917-23. PubMed ID: 24797820
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries.
    Hua W; Yang Z; Nie H; Li Z; Yang J; Guo Z; Ruan C; Chen X; Huang S
    ACS Nano; 2017 Feb; 11(2):2209-2218. PubMed ID: 28146627
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling.
    Feng X; Song MK; Stolte WC; Gardenghi D; Zhang D; Sun X; Zhu J; Cairns EJ; Guo J
    Phys Chem Chem Phys; 2014 Aug; 16(32):16931-40. PubMed ID: 24781200
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ternary confined-functional sulfur composite with a host-sulfur-container architecture for lithium/sulfur batteries.
    Wang Y; Liang X; Yun J; Shi P; Lu P; Sun Y; Xiang H
    Nanoscale; 2018 Oct; 10(38):18407-18414. PubMed ID: 30256369
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium-Sulfur Batteries.
    He F; Ye J; Cao Y; Xiao L; Yang H; Ai X
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11626-11633. PubMed ID: 28306233
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 1T-rich MoS
    He LJ; Liu J; Lv TT; Wei AC; Yuan TQ
    J Colloid Interface Sci; 2024 Oct; 671():175-183. PubMed ID: 38797143
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Smaller sulfur molecules promise better lithium-sulfur batteries.
    Xin S; Gu L; Zhao NH; Yin YX; Zhou LJ; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Nov; 134(45):18510-3. PubMed ID: 23101502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.