These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 27030290)
1. The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors. Huang X; Wang Q; Chen XY; Zhang ZJ Phys Chem Chem Phys; 2016 Apr; 18(15):10438-52. PubMed ID: 27030290 [TBL] [Abstract][Full Text] [Related]
2. Synergistic effect of novel redox additives of p-nitroaniline and dimethylglyoxime for highly improving the supercapacitor performances. Nie YF; Wang Q; Chen XY; Zhang ZJ Phys Chem Chem Phys; 2016 Jan; 18(4):2718-29. PubMed ID: 26730443 [TBL] [Abstract][Full Text] [Related]
3. Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage. Krüner B; Lee J; Jäckel N; Tolosa A; Presser V ACS Appl Mater Interfaces; 2016 Apr; 8(14):9104-15. PubMed ID: 26996252 [TBL] [Abstract][Full Text] [Related]
4. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte. Zhang Y; Cui X; Zu L; Cai X; Liu Y; Wang X; Lian H Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773855 [TBL] [Abstract][Full Text] [Related]
5. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Mai LQ; Minhas-Khan A; Tian X; Hercule KM; Zhao YL; Lin X; Xu X Nat Commun; 2013; 4():2923. PubMed ID: 24327172 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors. Jiang J; Chen H; Wang Z; Bao L; Qiang Y; Guan S; Chen J J Colloid Interface Sci; 2015 Aug; 452():54-61. PubMed ID: 25913778 [TBL] [Abstract][Full Text] [Related]
7. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte. Chen YC; Lin LY J Colloid Interface Sci; 2019 Mar; 537():295-305. PubMed ID: 30448650 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. Wan L; Wang J; Xie L; Sun Y; Li K ACS Appl Mater Interfaces; 2014 Sep; 6(17):15583-96. PubMed ID: 25137068 [TBL] [Abstract][Full Text] [Related]
9. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. Wang L; Mu G; Tian C; Sun L; Zhou W; Yu P; Yin J; Fu H ChemSusChem; 2013 May; 6(5):880-9. PubMed ID: 23606450 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. Fuertes AB; Sevilla M ACS Appl Mater Interfaces; 2015 Feb; 7(7):4344-53. PubMed ID: 25675347 [TBL] [Abstract][Full Text] [Related]
11. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application. Peng H; Ma G; Sun K; Mu J; Zhang Z; Lei Z ACS Appl Mater Interfaces; 2014 Dec; 6(23):20795-803. PubMed ID: 25372656 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of Hierarchical Porous Carbon Nanoflakes for High-Performance Supercapacitors. Yao Y; Zhang Y; Li L; Wang S; Dou S; Liu X ACS Appl Mater Interfaces; 2017 Oct; 9(40):34944-34953. PubMed ID: 28920670 [TBL] [Abstract][Full Text] [Related]
13. Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors. Ma Y; Ma C; Sheng J; Zhang H; Wang R; Xie Z; Shi J J Colloid Interface Sci; 2016 Jan; 461():96-103. PubMed ID: 26397915 [TBL] [Abstract][Full Text] [Related]
14. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Liang Q; Ye L; Huang ZH; Xu Q; Bai Y; Kang F; Yang QH Nanoscale; 2014 Nov; 6(22):13831-7. PubMed ID: 25300494 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. Tan Y; Xu C; Chen G; Liu Z; Ma M; Xie Q; Zheng N; Yao S ACS Appl Mater Interfaces; 2013 Mar; 5(6):2241-8. PubMed ID: 23425031 [TBL] [Abstract][Full Text] [Related]
16. Nano-sized Mn-doped activated carbon aerogel as electrode material for electrochemical capacitor: effect of activation conditions. Lee YJ; Park HW; Park S; Song IK J Nanosci Nanotechnol; 2012 Jul; 12(7):6058-64. PubMed ID: 22966708 [TBL] [Abstract][Full Text] [Related]
17. Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area. Li XJ; Xing W; Zhou J; Wang GQ; Zhuo SP; Yan ZF; Xue QZ; Qiao SZ Chemistry; 2014 Oct; 20(41):13314-20. PubMed ID: 25156693 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications. Wen Y; Zhang L; Liu J; Wen X; Chen X; Ma J; Tang T; Mijowska E Nanotechnology; 2019 Jul; 30(29):295703. PubMed ID: 30861503 [TBL] [Abstract][Full Text] [Related]
19. Enhanced electrochemical behaviors of carbon felt electrode using redox-active electrolyte for all-solid-state supercapacitors. Chen L; Wu C; Qin W; Wang X; Jia C J Colloid Interface Sci; 2020 Oct; 577():12-18. PubMed ID: 32470700 [TBL] [Abstract][Full Text] [Related]
20. 3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Template-Free Method. Zhang W; Lin H; Lin Z; Yin J; Lu H; Liu D; Zhao M ChemSusChem; 2015 Jun; 8(12):2114-22. PubMed ID: 26033894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]