BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27030354)

  • 21. Molecular analysis of ATP-sensitive K⁺ channel subunits expressed in mouse vas deferens myocytes.
    Iwasa K; Zhu HL; Shibata A; Maehara Y; Teramoto N
    Br J Pharmacol; 2014 Jan; 171(1):145-57. PubMed ID: 24117345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antisense oligodeoxynucleotides of sulfonylurea receptors inhibit ATP-sensitive K+ channels in cultured neonatal rat ventricular cells.
    Yokoshiki H; Sunagawa M; Seki T; Sperelakis N
    Pflugers Arch; 1999 Feb; 437(3):400-8. PubMed ID: 9914396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reopening of ATP-sensitive potassium channels reduces neuropathic pain and regulates astroglial gap junctions in the rat spinal cord.
    Wu XF; Liu WT; Liu YP; Huang ZJ; Zhang YK; Song XJ
    Pain; 2011 Nov; 152(11):2605-2615. PubMed ID: 21907492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating ATP-sensitive potassium channels.
    Kong DW; Du LD; Liu RZ; Yuan TY; Wang SB; Wang YH; Lu Y; Fang LH; Du GH
    Acta Pharmacol Sin; 2024 Mar; 45(3):480-489. PubMed ID: 37993535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. KATP channels in mouse spermatogenic cells and sperm, and their role in capacitation.
    Acevedo JJ; Mendoza-Lujambio I; de la Vega-Beltrán JL; Treviño CL; Felix R; Darszon A
    Dev Biol; 2006 Jan; 289(2):395-405. PubMed ID: 16343479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1.
    Ishida-Takahashi A; Otani H; Takahashi C; Washizuka T; Tsuji K; Noda M; Horie M; Sasayama S
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):23-30. PubMed ID: 9490811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels.
    Gribble FM; Tucker SJ; Seino S; Ashcroft FM
    Diabetes; 1998 Sep; 47(9):1412-8. PubMed ID: 9726229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP-sensitive Potassium Channel Subunits in Neuroinflammation: Novel Drug Targets in Neurodegenerative Disorders.
    Maqoud F; Scala R; Hoxha M; Zappacosta B; Tricarico D
    CNS Neurol Disord Drug Targets; 2022; 21(2):130-149. PubMed ID: 33463481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heart mitochondria contain functional ATP-dependent K+ channels.
    Lacza Z; Snipes JA; Miller AW; Szabó C; Grover G; Busija DW
    J Mol Cell Cardiol; 2003 Nov; 35(11):1339-47. PubMed ID: 14596790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish.
    Zhang C; Miki T; Shibasaki T; Yokokura M; Saraya A; Seino S
    Physiol Genomics; 2006 Feb; 24(3):290-7. PubMed ID: 16317080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbamazepine promotes surface expression of mutant Kir6.2-A28V ATP-sensitive potassium channels by modulating Golgi retention and autophagy.
    Lin CH; Lin YC; Yang SB; Chen PC
    J Biol Chem; 2022 May; 298(5):101904. PubMed ID: 35398096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of ZD0947, a novel and potent ATP-sensitive K
    Mori K; Yamashita Y; Teramoto N
    Eur J Pharmacol; 2016 Nov; 791():773-779. PubMed ID: 27693800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional dissection of KATP channel structures reveals the importance of a conserved interface.
    Yang Y; Chen L
    Structure; 2024 Feb; 32(2):168-176.e2. PubMed ID: 38101402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Palmitoylation of the K
    Yang HQ; Martinez-Ortiz W; Hwang J; Fan X; Cardozo TJ; Coetzee WA
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10593-10602. PubMed ID: 32332165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of truncated Kir6.2 promotes insertion of functionally inverted ATP-sensitive K
    Heitz BA; Bränström R; Yang W; Huang Y; Moede T; Leibiger IB; Leibiger B; Chen LQ; Yu J; Yang SN; Larsson O; Saavedra SS; Berggren PO; Aspinwall CA
    Sci Rep; 2021 Nov; 11(1):21539. PubMed ID: 34728728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel.
    Yamada M; Isomoto S; Matsumoto S; Kondo C; Shindo T; Horio Y; Kurachi Y
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):715-20. PubMed ID: 9130167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways.
    Kajioka S; Nakayama S; Asano H; Seki N; Naito S; Brading AF
    J Pharmacol Exp Ther; 2008 Oct; 327(1):114-23. PubMed ID: 18596222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of liver regeneration by adenosine triphosphate-sensitive K⁺ channel opener (diazoxide) after partial hepatectomy.
    Nakagawa Y; Yoshioka M; Abe Y; Uchinami H; Ohba T; Ono K; Yamamoto Y
    Transplantation; 2012 Jun; 93(11):1094-100. PubMed ID: 22466787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The antiarrhythmic agent cibenzoline inhibits KATP channels by binding to Kir6.2.
    Mukai E; Ishida H; Horie M; Noma A; Seino Y; Takano M
    Biochem Biophys Res Commun; 1998 Oct; 251(2):477-81. PubMed ID: 9792799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.