These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27030663)

  • 1. A High-Throughput Microfluidic Platform for Mammalian Cell Transfection and Culturing.
    Woodruff K; Maerkl SJ
    Sci Rep; 2016 Mar; 6():23937. PubMed ID: 27030663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Transfection for High-Throughput Mammalian Protein Expression.
    Woodruff K; Maerkl SJ
    Methods Mol Biol; 2018; 1850():189-208. PubMed ID: 30242688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Based Optical Microscopes on Chip.
    Paiè P; Martínez Vázquez R; Osellame R; Bragheri F; Bassi A
    Cytometry A; 2018 Oct; 93(10):987-996. PubMed ID: 30211977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.
    Barata D; Spennati G; Correia C; Ribeiro N; Harink B; van Blitterswijk C; Habibovic P; van Rijt S
    Biomed Microdevices; 2017 Sep; 19(4):81. PubMed ID: 28884359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.
    Kim JY; Fluri DA; Kelm JM; Hierlemann A; Frey O
    J Lab Autom; 2015 Jun; 20(3):274-82. PubMed ID: 25524491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules.
    Joensuu M; Martínez-Mármol R; Padmanabhan P; Glass NR; Durisic N; Pelekanos M; Mollazade M; Balistreri G; Amor R; Cooper-White JJ; Goodhill GJ; Meunier FA
    Nat Protoc; 2017 Dec; 12(12):2590-2622. PubMed ID: 29189775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-contained, programmable microfluidic cell culture system with real-time microscopy access.
    Skafte-Pedersen P; Hemmingsen M; Sabourin D; Blaga FS; Bruus H; Dufva M
    Biomed Microdevices; 2012 Apr; 14(2):385-99. PubMed ID: 22160447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies.
    Kong T; Backes N; Kalwa U; Legner C; Phillips GJ; Pandey S
    ACS Sens; 2019 Oct; 4(10):2638-2645. PubMed ID: 31583880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets.
    Hufnagel H; Huebner A; Gülch C; Güse K; Abell C; Hollfelder F
    Lab Chip; 2009 Jun; 9(11):1576-82. PubMed ID: 19458865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip.
    van de Wijdeven R; Ramstad OH; Bauer US; Halaas Ø; Sandvig A; Sandvig I
    Biomed Microdevices; 2018 Jan; 20(1):9. PubMed ID: 29294210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-driven microfluidic perfusion culture device for integrated dose-response assays.
    Hattori K; Sugiura S; Kanamori T
    J Lab Autom; 2013 Dec; 18(6):437-45. PubMed ID: 24014544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment.
    Luke CS; Selimkhanov J; Baumgart L; Cohen SE; Golden SS; Cookson NA; Hasty J
    ACS Synth Biol; 2016 Jan; 5(1):8-14. PubMed ID: 26332284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform.
    Liu W; Wang J
    Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile, fully automated, microfluidic cell culture system.
    Gómez-Sjöberg R; Leyrat AA; Pirone DM; Chen CS; Quake SR
    Anal Chem; 2007 Nov; 79(22):8557-63. PubMed ID: 17953452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.
    Choi J; Kim S; Jung J; Lim Y; Kang K; Park S; Kang S
    Biomaterials; 2011 Oct; 32(29):7013-22. PubMed ID: 21705075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gel-free 3D microfluidic cell culture system.
    Ong SM; Zhang C; Toh YC; Kim SH; Foo HL; Tan CH; van Noort D; Park S; Yu H
    Biomaterials; 2008 Aug; 29(22):3237-44. PubMed ID: 18455231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.