These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27030954)

  • 1. Numerical modelling of biophysicochemical effects on multispecies reactive transport in porous media involving Pseudomonas putida for potential microbial enhanced oil recovery application.
    Sivasankar P; Rajesh Kanna A; Suresh Kumar G; Gummadi SN
    Bioresour Technol; 2016 Jul; 211():348-59. PubMed ID: 27030954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pH on dynamics of microbial enhanced oil recovery processes using biosurfactant producing Pseudomonas putida: Mathematical modelling and numerical simulation.
    Sivasankar P; Suresh Kumar G
    Bioresour Technol; 2017 Jan; 224():498-508. PubMed ID: 27836230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.
    Alvarez VM; Jurelevicius D; Marques JM; de Souza PM; de Araújo LV; Barros TG; de Souza RO; Freire DM; Seldin L
    Colloids Surf B Biointerfaces; 2015 Dec; 136():14-21. PubMed ID: 26350801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions.
    Bordoloi NK; Konwar BK
    Colloids Surf B Biointerfaces; 2008 May; 63(1):73-82. PubMed ID: 18164187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.
    Zhao F; Li P; Guo C; Shi RJ; Zhang Y
    Bioresour Technol; 2018 Mar; 251():295-302. PubMed ID: 29289873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene.
    Shin KH; Kim KW; Seagren EA
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):336-43. PubMed ID: 15309342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.
    Dhanarajan G; Rangarajan V; Bandi C; Dixit A; Das S; Ale K; Sen R
    J Biotechnol; 2017 Aug; 256():46-56. PubMed ID: 28499818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of phenanthrene in rhamnolipid production by P. putida in different media.
    Martínez-Toledo A; Ríos-Leal E; Vázquez-Duhalt R; González-Chávez Mdel C; Esparza-García JF; Rodríguez-Vázquez R
    Environ Technol; 2006 Feb; 27(2):137-42. PubMed ID: 16506509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.
    Cha M; Lee N; Kim M; Kim M; Lee S
    Bioresour Technol; 2008 May; 99(7):2192-9. PubMed ID: 17611103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing biodegradation of furfuryl alcohol using Pseudomonas putida MTCC 1194 and Pseudomonas aeruginosa MTCC 1034 and its kinetics.
    Kumar R; Rashmi D
    World J Microbiol Biotechnol; 2017 Dec; 34(1):2. PubMed ID: 29204965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment and identification of biosurfactant-producing oil field microbiota utilizing electron acceptors other than oxygen and nitrate.
    Kryachko Y; Semler D; Vogrinetz J; Lemke M; Links MG; McCarthy EL; Haug B; Hemmingsen SM
    J Biotechnol; 2016 Aug; 231():9-15. PubMed ID: 27212608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting performance of in-situ microbial enhanced oil recovery process and screening of suitable microbe-nutrient combination from limited experimental data using physics informed machine learning approach.
    Pavan PS; Arvind K; Nikhil B; Sivasankar P
    Bioresour Technol; 2022 May; 351():127023. PubMed ID: 35307523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dynamics of phosphate mobilization by Enterobacter dissolvens and Pseudomonas putida strains from tricalcium phosphate].
    Lavrent'ieva KV; Cherevach NV; Vinnikov AI
    Mikrobiol Z; 2008; 70(1):25-30. PubMed ID: 18416151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria.
    Kumar M; Leon V; Materano Ade S; Ilzins OA
    Pol J Microbiol; 2006; 55(2):139-46. PubMed ID: 17419292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
    Zhang J; Xue Q; Gao H; Lai H; Wang P
    Microb Cell Fact; 2016 Oct; 15(1):168. PubMed ID: 27716284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2.
    Darvishi P; Ayatollahi S; Mowla D; Niazi A
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):292-300. PubMed ID: 21345657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Model and Numerical Simulation of Microbial Growth, Migration, and Oil Displacement in Reservoir Porous Media.
    Yao C; Meng X; Qu X; Cheng T; Da Q; Zhang K; Lei G
    ACS Omega; 2022 Sep; 7(36):32549-32561. PubMed ID: 36120076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of combined nutrients on biosurfactant produced by Pseudomonas putida.
    Amézcua-Vega C; Ferrera-Cerrato R; Esparza-García F; Ríos-Leal E; Rodríguez-Vázquez R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(11-12):2983-91. PubMed ID: 15533018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter.
    Chung YC; Huang C; Tseng CP
    Biotechnol Prog; 1996; 12(6):773-8. PubMed ID: 8983205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.