These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Wu S; Duan B; Lu A; Wang Y; Ye Q; Zhang L Carbohydr Polym; 2017 Oct; 174():830-840. PubMed ID: 28821138 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. Sang S; Cheng R; Cao Y; Yan Y; Shen Z; Zhao Y; Han Y J Zhejiang Univ Sci B; 2022 Jan; 23(1):58-73. PubMed ID: 35029088 [TBL] [Abstract][Full Text] [Related]
7. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709 [TBL] [Abstract][Full Text] [Related]
8. Differential neural cell adhesion and neurite outgrowth on carbon nanotube and graphene reinforced polymeric scaffolds. Gupta P; Agrawal A; Murali K; Varshney R; Beniwal S; Manhas S; Roy P; Lahiri D Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():539-551. PubMed ID: 30678940 [TBL] [Abstract][Full Text] [Related]
9. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Pan L; Pei X; He R; Wan Q; Wang J Colloids Surf B Biointerfaces; 2012 May; 93():226-34. PubMed ID: 22305638 [TBL] [Abstract][Full Text] [Related]
10. Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Shao H; Li T; Zhu R; Xu X; Yu J; Chen S; Song L; Ramakrishna S; Lei Z; Ruan Y; He L Biomaterials; 2018 Aug; 175():93-109. PubMed ID: 29804001 [TBL] [Abstract][Full Text] [Related]
11. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Madhumathi K; Sudheesh Kumar PT; Kavya KC; Furuike T; Tamura H; Nair SV; Jayakumar R Int J Biol Macromol; 2009 Oct; 45(3):289-92. PubMed ID: 19549539 [TBL] [Abstract][Full Text] [Related]
12. 45S5 Bioglass(®)-MWCNT composite: processing and bioactivity. Porwal H; Estili M; Grünewald A; Grasso S; Detsch R; Hu C; Sakka Y; Boccaccini AR; Reece MJ J Mater Sci Mater Med; 2015 Jun; 26(6):199. PubMed ID: 26109452 [TBL] [Abstract][Full Text] [Related]
13. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Edwards SL; Church JS; Werkmeister JA; Ramshaw JA Biomaterials; 2009 Mar; 30(9):1725-31. PubMed ID: 19124155 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Multiwall Carbon Nanotubes Embedded Electroconductive Multi-Microchannel Scaffolds for Neuron Growth under Electrical Stimulation. Liu Z; Yushan M; Alike Y; Liu Y; Wu S; Ma C; Yusufu A Biomed Res Int; 2020; 2020():4794982. PubMed ID: 32337253 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites. Tan W; Twomey J; Guo D; Madhavan K; Li M IEEE Trans Nanobioscience; 2010 Jun; 9(2):111-20. PubMed ID: 20215088 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of novel β-chitin/nanodiopside/nanohydroxyapatite composite scaffolds for tissue engineering applications. Teimouri A; Azadi M; Shams Ghahfarokhi Z; Razavizadeh R J Biomater Sci Polym Ed; 2017 Jan; 28(1):1-14. PubMed ID: 27604099 [TBL] [Abstract][Full Text] [Related]
19. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds. Zanin H; Rosa CM; Eliaz N; May PW; Marciano FR; Lobo AO Nanoscale; 2015 Jun; 7(22):10218-32. PubMed ID: 25990927 [TBL] [Abstract][Full Text] [Related]
20. Carbon Nanotube-Hydrogel Composites Facilitate Neuronal Differentiation While Maintaining Homeostasis of Network Activity. Ye L; Ji H; Liu J; Tu CH; Kappl M; Koynov K; Vogt J; Butt HJ Adv Mater; 2021 Oct; 33(41):e2102981. PubMed ID: 34453367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]