These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. Sirivisoot S; Harrison BS Int J Nanomedicine; 2011; 6():2483-97. PubMed ID: 22072883 [TBL] [Abstract][Full Text] [Related]
24. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells. Cho Y; Borgens RB J Biomed Mater Res A; 2010 Nov; 95(2):510-7. PubMed ID: 20665676 [TBL] [Abstract][Full Text] [Related]
25. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Jin GZ; Kim M; Shin US; Kim HW Neurosci Lett; 2011 Aug; 501(1):10-4. PubMed ID: 21723372 [TBL] [Abstract][Full Text] [Related]
26. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells. Gopinathan J; Quigley AF; Bhattacharyya A; Padhye R; Kapsa RM; Nayak R; Shanks RA; Houshyar S J Biomed Mater Res A; 2016 Apr; 104(4):853-65. PubMed ID: 26646762 [TBL] [Abstract][Full Text] [Related]
27. Induced neural stem cell differentiation on a drawn fiber scaffold-toward peripheral nerve regeneration. Keshavarz M; Wales DJ; Seichepine F; Abdelaziz MEMK; Kassanos P; Li Q; Temelkuran B; Shen H; Yang GZ Biomed Mater; 2020 Jul; 15(5):055011. PubMed ID: 32330920 [TBL] [Abstract][Full Text] [Related]
28. In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering. Mackle JN; Blond DJ; Mooney E; McDonnell C; Blau WJ; Shaw G; Barry FP; Murphy JM; Barron V Macromol Biosci; 2011 Sep; 11(9):1272-82. PubMed ID: 21728234 [TBL] [Abstract][Full Text] [Related]
33. Nanocellulose electroconductive composites. Shi Z; Phillips GO; Yang G Nanoscale; 2013 Apr; 5(8):3194-201. PubMed ID: 23512106 [TBL] [Abstract][Full Text] [Related]
34. In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. Meng D; Rath SN; Mordan N; Salih V; Kneser U; Boccaccini AR J Biomed Mater Res A; 2011 Dec; 99(3):435-44. PubMed ID: 21887738 [TBL] [Abstract][Full Text] [Related]
35. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Shin J; Choi EJ; Cho JH; Cho AN; Jin Y; Yang K; Song C; Cho SW Biomacromolecules; 2017 Oct; 18(10):3060-3072. PubMed ID: 28876908 [TBL] [Abstract][Full Text] [Related]
36. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. Khang D; Park GE; Webster TJ J Biomed Mater Res A; 2008 Jul; 86(1):253-60. PubMed ID: 18186050 [TBL] [Abstract][Full Text] [Related]
37. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Cheng Q; Rutledge K; Jabbarzadeh E Ann Biomed Eng; 2013 May; 41(5):904-16. PubMed ID: 23283475 [TBL] [Abstract][Full Text] [Related]
38. Carbon nanotube fibers are compatible with Mammalian cells and neurons. Dubin RA; Callegari G; Kohn J; Neimark A IEEE Trans Nanobioscience; 2008 Mar; 7(1):11-4. PubMed ID: 18334451 [TBL] [Abstract][Full Text] [Related]
39. Controlling the mechanics and nanotopography of biocompatible scaffolds through dielectrophoresis with carbon nanotubes. Lu YL; Cheng CM; LeDuc PR; Ho MS Electrophoresis; 2008 Aug; 29(15):3123-7. PubMed ID: 18615410 [TBL] [Abstract][Full Text] [Related]
40. Effects of multiwalled carbon nanotubes on electrospun poly(lactide-co-glycolide)-based nanocomposite scaffolds on neural cells proliferation. Lv ZJ; Liu Y; Miao H; Leng ZQ; Guo JH; Liu J J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):934-943. PubMed ID: 26849161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]