BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27031496)

  • 1. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields.
    Panek JJ; Ward TR; Jezierska-Mazzarello A; Novic M
    J Comput Aided Mol Des; 2010 Sep; 24(9):719-32. PubMed ID: 20526651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology.
    Lo C; Ringenberg MR; Gnandt D; Wilson Y; Ward TR
    Chem Commun (Camb); 2011 Nov; 47(44):12065-7. PubMed ID: 21959544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural, kinetic, and docking studies of artificial imine reductases based on biotin-streptavidin technology: an induced lock-and-key hypothesis.
    Robles VM; Dürrenberger M; Heinisch T; Lledós A; Schirmer T; Ward TR; Maréchal JD
    J Am Chem Soc; 2014 Nov; 136(44):15676-83. PubMed ID: 25317660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation.
    Igareta NV; Tachibana R; Spiess DC; Peterson RL; Ward TR
    Faraday Discuss; 2023 Aug; 244(0):9-20. PubMed ID: 36924204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutralizing the detrimental effect of glutathione on precious metal catalysts.
    Wilson YM; Dürrenberger M; Nogueira ES; Ward TR
    J Am Chem Soc; 2014 Jun; 136(25):8928-32. PubMed ID: 24918731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptavidin Coverage on Biotinylated Surfaces.
    Hamming PHE; Huskens J
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58114-58123. PubMed ID: 34813287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell.
    Okamoto Y; Kojima R; Schwizer F; Bartolami E; Heinisch T; Matile S; Fussenegger M; Ward TR
    Nat Commun; 2018 May; 9(1):1943. PubMed ID: 29769518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein.
    Ward TR
    Chemistry; 2005 Jun; 11(13):3798-804. PubMed ID: 15761912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design.
    Heinisch T; Pellizzoni M; Dürrenberger M; Tinberg CE; Köhler V; Klehr J; Häussinger D; Baker D; Ward TR
    J Am Chem Soc; 2015 Aug; 137(32):10414-9. PubMed ID: 26226626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein.
    Letondor C; Pordea A; Humbert N; Ivanova A; Mazurek S; Novic M; Ward TR
    J Am Chem Soc; 2006 Jun; 128(25):8320-8. PubMed ID: 16787096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein.
    Baiyoumy A; Vallapurackal J; Schwizer F; Heinisch T; Kardashliev T; Held M; Panke S; Ward TR
    ACS Catal; 2021 Sep; 11(17):10705-10712. PubMed ID: 34504734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple elution strategy for biotinylated proteins bound to streptavidin conjugated beads using excess biotin and heat.
    Cheah JS; Yamada S
    Biochem Biophys Res Commun; 2017 Dec; 493(4):1522-1527. PubMed ID: 28986262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalysts.
    Santi N; Morrill LC; Swiderek K; Moliner V; Luk LYP
    Chem Commun (Camb); 2021 Feb; 57(15):1919-1922. PubMed ID: 33496282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.