These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27031883)

  • 1. An empirical Kaiser criterion.
    Braeken J; van Assen MALM
    Psychol Methods; 2017 Sep; 22(3):450-466. PubMed ID: 27031883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploratory factor analysis for small samples.
    Jung S; Lee S
    Behav Res Methods; 2011 Sep; 43(3):701-9. PubMed ID: 21431996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions.
    Auerswald M; Moshagen M
    Psychol Methods; 2019 Aug; 24(4):468-491. PubMed ID: 30667242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the number of factors to retain in exploratory factor analysis for ordered categorical data.
    Yang Y; Xia Y
    Behav Res Methods; 2015 Sep; 47(3):756-72. PubMed ID: 24947054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing sample size when using exploratory factor analysis for measurement.
    Sapnas KG; Zeller RA
    J Nurs Meas; 2002; 10(2):135-54. PubMed ID: 12619534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining Sample Size Requirements in EFA Solutions: A Simple Empirical Proposal.
    Lorenzo-Seva U; Ferrando PJ
    Multivariate Behav Res; 2024; 59(5):899-912. PubMed ID: 38717588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. More efficient parameter estimates for factor analysis of ordinal variables by ridge generalized least squares.
    Yuan KH; Jiang G; Cheng Y
    Br J Math Stat Psychol; 2017 Nov; 70(3):525-564. PubMed ID: 28547838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical comparison of information-theoretic selection criteria for multivariate behavior genetic models.
    Markon KE; Krueger RF
    Behav Genet; 2004 Nov; 34(6):593-610. PubMed ID: 15520516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heywood you go away! Examining causes, effects, and treatments for Heywood cases in exploratory factor analysis.
    Cooperman AW; Waller NG
    Psychol Methods; 2022 Apr; 27(2):156-176. PubMed ID: 34197140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploratory factor analysis with small sample sizes: a comparison of three approaches.
    Jung S
    Behav Processes; 2013 Jul; 97():90-5. PubMed ID: 23541772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample size and power estimates for a confirmatory factor analytic model in exercise and sport: a Monte Carlo approach.
    Myers ND; Ahn S; Jin Y
    Res Q Exerc Sport; 2011 Sep; 82(3):412-23. PubMed ID: 21957699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the number of factors in exploratory factor analysis via out-of-sample prediction errors.
    Haslbeck JMB; van Bork R
    Psychol Methods; 2024 Feb; 29(1):48-64. PubMed ID: 36326634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Regression Equation for Determining the Dimensionality of Data.
    Keeling KB
    Multivariate Behav Res; 2000 Oct; 35(4):457-68. PubMed ID: 26811200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating Monte Carlo power studies through parametric power estimation.
    Ueckert S; Karlsson MO; Hooker AC
    J Pharmacokinet Pharmacodyn; 2016 Apr; 43(2):223-34. PubMed ID: 26934878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing sample size when using exploratory factor analysis for measurement.
    Knapp TR; Sawilowsky SS
    J Nurs Meas; 2004; 12(2):95-6; author reply 97-9. PubMed ID: 16092708
    [No Abstract]   [Full Text] [Related]  

  • 17. Sample size planning for complex study designs: A tutorial for the mlpwr package.
    Zimmer F; Henninger M; Debelak R
    Behav Res Methods; 2024 Aug; 56(5):5246-5263. PubMed ID: 38030925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of MIVQUE and REML with Monte Carlo simulation].
    Zhang Q; Zhang Y; Liu Z; Haussmann H
    Yi Chuan Xue Bao; 1995; 22(6):424-30. PubMed ID: 8900839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the number of factors using parallel analysis and its recent variants.
    Lim S; Jahng S
    Psychol Methods; 2019 Aug; 24(4):452-467. PubMed ID: 31180694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random matrix ensembles involving Gaussian Wigner and Wishart matrices, and biorthogonal structure.
    Kumar S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032903. PubMed ID: 26465536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.