These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27031914)

  • 1. Is It Fe(III)-Oxyl Radical That Abstracts Hydrogen in the C-H Activation of TauD? A Theoretical Study Based on the DFT Potential Energy Surfaces.
    Mai BK; Kim Y
    Inorg Chem; 2016 Apr; 55(8):3844-52. PubMed ID: 27031914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VTST/MT studies of the catalytic mechanism of C-H activation by transition metal complexes with [Cu
    Kim Y; Mai BK; Park S
    J Biol Inorg Chem; 2017 Apr; 22(2-3):321-338. PubMed ID: 28091753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-dependent H/D kinetic isotope effects and the role of the di(μ-oxo)diiron(IV) core in soluble methane monooxygenase: a theoretical study.
    Mai BK; Kim Y
    Chemistry; 2014 May; 20(21):6532-41. PubMed ID: 24715359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An active-site phenylalanine directs substrate binding and C-H cleavage in the alpha-ketoglutarate-dependent dioxygenase TauD.
    McCusker KP; Klinman JP
    J Am Chem Soc; 2010 Apr; 132(14):5114-20. PubMed ID: 20302299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic dissection of the catalytic mechanism of taurine:alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli.
    Price JC; Barr EW; Hoffart LM; Krebs C; Bollinger JM
    Biochemistry; 2005 Jun; 44(22):8138-47. PubMed ID: 15924433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP
    J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Biological Hydrogen Transfer Through the Lens of Temperature Dependent Kinetic Isotope Effects.
    Klinman JP; Offenbacher AR
    Acc Chem Res; 2018 Sep; 51(9):1966-1974. PubMed ID: 30152685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical studies of C-H activation reactions by high-valent nonheme iron centers.
    Ye S; Neese F
    Curr Opin Chem Biol; 2009 Feb; 13(1):89-98. PubMed ID: 19272830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways.
    Kupper C; Mondal B; Serrano-Plana J; Klawitter I; Neese F; Costas M; Ye S; Meyer F
    J Am Chem Soc; 2017 Jul; 139(26):8939-8949. PubMed ID: 28557448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for hydrogen abstraction from C1 of taurine by the high-spin Fe(IV) intermediate detected during oxygen activation by taurine:alpha-ketoglutarate dioxygenase (TauD).
    Price JC; Barr EW; Glass TE; Krebs C; Bollinger JM
    J Am Chem Soc; 2003 Oct; 125(43):13008-9. PubMed ID: 14570457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.
    Cong Z; Kinemuchi H; Kurahashi T; Fujii H
    Inorg Chem; 2014 Oct; 53(19):10632-41. PubMed ID: 25222493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear Resonance Vibrational Spectroscopic Definition of the Facial Triad Fe
    Srnec M; Iyer SR; Dassama LMK; Park K; Wong SD; Sutherlin KD; Yoda Y; Kobayashi Y; Kurokuzu M; Saito M; Seto M; Krebs C; Bollinger JM; Solomon EI
    J Am Chem Soc; 2020 Nov; 142(44):18886-18896. PubMed ID: 33103886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of Spin Inversion Probability, H-Tunneling Correction, and Regioselectivity in the Two-State Reactivity of Nonheme Iron(IV)-Oxo Complexes.
    Kwon YH; Mai BK; Lee YM; Dhuri SN; Mandal D; Cho KB; Kim Y; Shaik S; Nam W
    J Phys Chem Lett; 2015 Apr; 6(8):1472-6. PubMed ID: 26263154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity and mechanism of hydrogen atom transfer by an isolable imidoiron(III) complex.
    Cowley RE; Eckert NA; Vaddadi S; Figg TM; Cundari TR; Holland PL
    J Am Chem Soc; 2011 Jun; 133(25):9796-811. PubMed ID: 21563763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large tunneling effect on the hydrogen transfer in bis(μ-oxo)dicopper enzyme: a theoretical study.
    Park K; Pak Y; Kim Y
    J Am Chem Soc; 2012 Feb; 134(7):3524-31. PubMed ID: 22276687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.