BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27032054)

  • 1. Enantioselective Recognition for Many Different Kinds of Chiral Guests by One Chiral Receptor Based on Tetraphenylethylene Cyclohexylbisurea.
    Xiong JB; Xie WZ; Sun JP; Wang JH; Zhu ZH; Feng HT; Guo D; Zhang H; Zheng YS
    J Org Chem; 2016 May; 81(9):3720-6. PubMed ID: 27032054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence Turn-on Enantioselective Recognition of both Chiral Acidic Compounds and α-Amino Acids by a Chiral Tetraphenylethylene Macrocycle Amine.
    Feng HT; Zhang X; Zheng YS
    J Org Chem; 2015 Aug; 80(16):8096-101. PubMed ID: 26197038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hindered Tetraphenylethylene Helicates: Chiral Fluorophores with Deep-Blue Emission, Multiple-Color CPL, and Chiral Recognition Ability.
    Hu M; Ye FY; Du C; Wang W; Yu W; Liu M; Zheng YS
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202115216. PubMed ID: 34904350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups.
    Zheng YS; Hu YJ; Li DM; Chen YC
    Talanta; 2010 Jan; 80(3):1470-4. PubMed ID: 20006116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral sensing by nonchiral tetrapyrroles.
    Labuta J; Hill JP; Ishihara S; Hanyková L; Ariga K
    Acc Chem Res; 2015 Mar; 48(3):521-9. PubMed ID: 25734700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of L-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids.
    Naziroglu HN; Durmaz M; Bozkurt S; Sirit A
    Chirality; 2011 Jul; 23(6):463-71. PubMed ID: 21472784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Fixed Propeller-Like Conformation of Tetraphenylethylene that Reveals Aggregation-Induced Emission Effect, Chiral Recognition, and Enhanced Chiroptical Property.
    Xiong JB; Feng HT; Sun JP; Xie WZ; Yang D; Liu M; Zheng YS
    J Am Chem Soc; 2016 Sep; 138(36):11469-72. PubMed ID: 27564514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depression of the apparent chiral recognition ability obtained in the host-guest complexation systems by electrospray and nano-electrospray ionization mass spectrometry.
    Sawada M; Takai Y; Yamada H; Yoshikawa M; Arakawa R; Tabuchi H; Takada M; Tanaka J; Shizuma M; Hirose K; Fukuda K; Tobe Y
    Eur J Mass Spectrom (Chichester); 2004; 10(1):27-37. PubMed ID: 15100476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds.
    Yongzhu J; Hirose K; Nakamura T; Nishioka R; Ueshige T; Tobe Y
    J Chromatogr A; 2006 Oct; 1129(2):201-7. PubMed ID: 16872621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.
    Cai P; Wu D; Zhao X; Pan Y
    Analyst; 2017 Aug; 142(16):2961-2966. PubMed ID: 28726877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect.
    Feng HT; Yuan YX; Xiong JB; Zheng YS; Tang BZ
    Chem Soc Rev; 2018 Oct; 47(19):7452-7476. PubMed ID: 30177975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gd(III)[15-metallacrown-5] recognition of chiral α-amino acid analogues.
    Lim CS; Jankolovits J; Zhao P; Kampf JW; Pecoraro VL
    Inorg Chem; 2011 Jun; 50(11):4832-41. PubMed ID: 21539299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective Recognition of Racemic Amino Alcohols in Aqueous Solution by Chiral Metal-Oxide Keplerate {Mo
    Pow RW; Sinclair ZL; Bell NL; Watfa N; Abul-Haija YM; Long DL; Cronin L
    Chemistry; 2021 Aug; 27(48):12327-12334. PubMed ID: 34196438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition.
    Wang C; Wu E; Wu X; Xu X; Zhang G; Pu L
    J Am Chem Soc; 2015 Mar; 137(11):3747-50. PubMed ID: 25761050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomer separation of amino compounds using a normal mobile phase.
    Hirose K; Yongzhu J; Nakamura T; Nishioka R; Ueshige T; Tobe Y
    Chirality; 2005 Mar; 17(3):142-8. PubMed ID: 15704196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral separation and enantioselective degradation of vinclozolin in soils.
    Liu H; Liu D; Shen Z; Sun M; Zhou Z; Wang P
    Chirality; 2014 Mar; 26(3):155-9. PubMed ID: 24497202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Enantiorecognition and Resolution by Chiral AIEgens.
    Wang X; Xiang S; Qi C; Chen M; Su X; Yang JC; Tian J; Feng HT; Tang BZ
    ACS Nano; 2022 May; 16(5):8223-8232. PubMed ID: 35544599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral recognition of peptide enantiomers by cinchona alkaloid derived chiral selectors: mechanistic investigations by liquid chromatography, NMR spectroscopy, and molecular modeling.
    Czerwenka C; Zhang MM; Kählig H; Maier NM; Lipkowitz KB; Lindner W
    J Org Chem; 2003 Oct; 68(22):8315-27. PubMed ID: 14575453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral molecular face-rotating sandwich structures constructed through restricting the phenyl flipping of tetraphenylethylene.
    Qu H; Tang X; Wang X; Li Z; Huang Z; Zhang H; Tian Z; Cao X
    Chem Sci; 2018 Dec; 9(47):8814-8818. PubMed ID: 30627398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.