These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27032479)

  • 1. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi.
    Pérez-Martín J; Bardetti P; Castanheira S; de la Torre A; Tenorio-Gómez M
    Semin Cell Dev Biol; 2016 Sep; 57():93-99. PubMed ID: 27032479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest.
    Castanheira S; Pérez-Martín J
    Plant Signal Behav; 2015; 10(4):e1001227. PubMed ID: 25876077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi.
    Pérez-Martín J; Castillo-Lluva S; Sgarlata C; Flor-Parra I; Mielnichuk N; Torreblanca J; Carbó N
    Mol Genet Genomics; 2006 Sep; 276(3):211-29. PubMed ID: 16896795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy vitalizes the pathogenicity of pathogenic fungi.
    Liu XH; Gao HM; Xu F; Lu JP; Devenish RJ; Lin FC
    Autophagy; 2012 Oct; 8(10):1415-25. PubMed ID: 22935638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis.
    Sgarlata C; Pérez-Martín J
    J Cell Sci; 2005 Aug; 118(Pt 16):3607-22. PubMed ID: 16046476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungi, dendritic cells and receptors: a host perspective of fungal virulence.
    Romani L; Bistoni F; Puccetti P
    Trends Microbiol; 2002 Nov; 10(11):508-14. PubMed ID: 12419615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetics of morphogenesis and pathogenic development of Ustilago maydis.
    Klosterman SJ; Perlin MH; Garcia-Pedrajas M; Covert SF; Gold SE
    Adv Genet; 2007; 57():1-47. PubMed ID: 17352901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology.
    Sartorel E; Pérez-Martín J
    J Cell Sci; 2012 Oct; 125(Pt 19):4597-608. PubMed ID: 22767510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct cell cycle regulation during saprophytic and pathogenic growth in fungal pathogens.
    Jiang C; Xu JR; Liu H
    Curr Genet; 2016 Feb; 62(1):185-9. PubMed ID: 26337287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal Pls1 tetraspanins as key factors of penetration into host plants: a role in re-establishing polarized growth in the appressorium?
    Veneault-Fourrey C; Lambou K; Lebrun MH
    FEMS Microbiol Lett; 2006 Mar; 256(2):179-84. PubMed ID: 16499604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ubiquitin system and morphogenesis of fungal pathogens.
    Kornitzer D
    Isr Med Assoc J; 2006 Apr; 8(4):243-5. PubMed ID: 16671358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connections between polar growth and cell cycle arrest during the induction of the virulence program in the phytopathogenic fungus Ustilago maydis.
    Pérez-Martín J; Castillo-Lluva S
    Plant Signal Behav; 2008 Jul; 3(7):480-1. PubMed ID: 19704492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dual-Specificity LAMMER Kinase Affects Stress-Response and Morphological Plasticity in Fungi.
    Lim JY; Park HM
    Front Cell Infect Microbiol; 2019; 9():213. PubMed ID: 31275866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of fungal appressoria in plant infection.
    Deising HB; Werner S; Wernitz M
    Microbes Infect; 2000 Nov; 2(13):1631-41. PubMed ID: 11113382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal model systems and the elucidation of pathogenicity determinants.
    Perez-Nadales E; Nogueira MF; Baldin C; Castanheira S; El Ghalid M; Grund E; Lengeler K; Marchegiani E; Mehrotra PV; Moretti M; Naik V; Oses-Ruiz M; Oskarsson T; Schäfer K; Wasserstrom L; Brakhage AA; Gow NA; Kahmann R; Lebrun MH; Perez-Martin J; Di Pietro A; Talbot NJ; Toquin V; Walther A; Wendland J
    Fungal Genet Biol; 2014 Sep; 70(100):42-67. PubMed ID: 25011008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence.
    O'Meara TR; Cowen LE
    Cell Microbiol; 2014 Apr; 16(4):473-81. PubMed ID: 24438186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.
    Zhou X; Zhao X; Xue C; Dai Y; Xu JR
    Mol Plant Microbe Interact; 2014 Sep; 27(9):996-1004. PubMed ID: 24835254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAP kinase pathways as regulators of fungal virulence.
    Román E; Arana DM; Nombela C; Alonso-Monge R; Pla J
    Trends Microbiol; 2007 Apr; 15(4):181-90. PubMed ID: 17321137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Map kinases in fungal pathogens.
    Xu JR
    Fungal Genet Biol; 2000 Dec; 31(3):137-52. PubMed ID: 11273677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis.
    Baeza-Montañez L; Gold SE; Espeso EA; García-Pedrajas MD
    Mol Plant Microbe Interact; 2015 Jan; 28(1):86-102. PubMed ID: 25208341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.