These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27032593)

  • 1. MICROMORPHOGENESIS DURING DIATOM WALL FORMATION PRODUCES SILICEOUS NANOSTRUCTURES WITH DIFFERENT PROPERTIES(1).
    Crawford SA; Chiovitti A; Pickett-Heaps J; Wetherbee R
    J Phycol; 2009 Dec; 45(6):1353-62. PubMed ID: 27032593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valve morphogenesis and the microtubule center of the diatom Hantzschia amphioxys.
    Pickett-Heaps J; Kowalski SE
    Eur J Cell Biol; 1981 Aug; 25(1):150-70. PubMed ID: 7285949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ultrastructure of diatom Synedra acus subsp. radians as revealed by transmission electron microscopy after mild silica dissolution].
    Bedoshvili ED; Likhoshvaĭ EV; Grachev MA
    Izv Akad Nauk Ser Biol; 2007; (3):367-71. PubMed ID: 17853700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of mineral cell coverings and their formation processes: a review focused on the siliceous cell coverings.
    Mayama S; Kuriyama A
    J Plant Res; 2002 Aug; 115(4):289-95. PubMed ID: 12582733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon nanotechnologies of pigmented heterokonts.
    Grachev MA; Annenkov VV; Likhoshway YV
    Bioessays; 2008 Apr; 30(4):328-37. PubMed ID: 18348175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frustule morphogenesis of raphid pennate diatom Encyonema ventricosum (Agardh) Grunow.
    Bedoshvili YD; Gneusheva KV; Popova MS; Avezova TN; Arsentyev KY; Likhoshway YV
    Protoplasma; 2018 May; 255(3):911-921. PubMed ID: 29270874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QUANTITATIVE NANOMECHANICAL MAPPING OF MARINE DIATOM IN SEAWATER USING PEAK FORCE TAPPING ATOMIC FORCE MICROSCOPY(1).
    Pletikapić G; Berquand A; Radić TM; Svetličić V
    J Phycol; 2012 Feb; 48(1):174-85. PubMed ID: 27009662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments.
    Tesson B; Hildebrand M
    J Struct Biol; 2010 Jan; 169(1):62-74. PubMed ID: 19729066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a New Protein Family Associated With the Silica Deposition Vesicle Membrane Enables Genetic Manipulation of Diatom Silica.
    Tesson B; Lerch SJL; Hildebrand M
    Sci Rep; 2017 Oct; 7(1):13457. PubMed ID: 29044150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse and conserved nano- and mesoscale structures of diatom silica revealed by atomic force microscopy.
    Hildebrand M; Holton G; Joy DC; Doktycz MJ; Allison DP
    J Microsc; 2009 Aug; 235(2):172-87. PubMed ID: 19659911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic subcellular translocation of V-type H
    Yee DP; Hildebrand M; Tresguerres M
    New Phytol; 2020 Mar; 225(6):2411-2422. PubMed ID: 31746463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the optical properties of valve and girdle band in a centric diatom.
    Goessling JW; Su Y; Maibohm C; Ellegaard M; Kühl M
    Interface Focus; 2019 Feb; 9(1):20180031. PubMed ID: 30603064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa.
    De Stefano M; De Stefano L
    J Nanosci Nanotechnol; 2005 Jan; 5(1):15-24. PubMed ID: 15762156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules.
    Parkinson J; Brechet Y; Gordon R
    Biochim Biophys Acta; 1999 Oct; 1452(1):89-102. PubMed ID: 10525163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium uptake and incorporation into silica nanostructures by the diatom
    Chauton MS; Skolem LM; Olsen LM; Vullum PE; Walmsley J; Vadstein O
    J Appl Phycol; 2015; 27(2):777-786. PubMed ID: 25866446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diatom auxospore scales and early stages in diatom frustule morphogenesis: their potential for use in nanotechnology.
    Tiffany MA
    J Nanosci Nanotechnol; 2005 Jan; 5(1):131-9. PubMed ID: 15762171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalies in the valve morphogenesis of the centric diatom alga
    Bedoshvili Y; Gneusheva K; Popova M; Morozov A; Likhoshway Y
    Biol Open; 2018 Aug; 7(8):. PubMed ID: 30037970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogenetic analysis of siliceous cell wall formation in Triparma laevis f. inornata (Parmales, Stramenopiles).
    Yamada K; Katsura H; Noël MH; Ichinomiya M; Kuwata A; Sato S; Yoshikawa S
    J Phycol; 2019 Feb; 55(1):196-203. PubMed ID: 30320892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicification of auxospores in the araphid diatom Tabularia fasciculata (Bacillariophyta).
    Mather L; Ehrman JM; Kaczmarska I
    Eur J Protistol; 2014 Feb; 50(1):1-10. PubMed ID: 23972513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SCALY INCUNABULA, AUXOSPORE DEVELOPMENT, AND GIRDLE POLYMORPHISM IN SELLAPHORA MARVANII SP. NOV. (BACILLARIOPHYCEAE)(1).
    Mann DG; Poulíčková A; Sato S; Evans KM
    J Phycol; 2011 Dec; 47(6):1368-78. PubMed ID: 27020361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.