BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 27032709)

  • 21. Exercise-induced oxidative stress: Friend or foe?
    Powers SK; Deminice R; Ozdemir M; Yoshihara T; Bomkamp MP; Hyatt H
    J Sport Health Sci; 2020 Sep; 9(5):415-425. PubMed ID: 32380253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage.
    Di Meo S; Napolitano G; Venditti P
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31226872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms modulating skeletal muscle phenotype.
    Blaauw B; Schiaffino S; Reggiani C
    Compr Physiol; 2013 Oct; 3(4):1645-87. PubMed ID: 24265241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.
    Morales-Alamo D; Calbet JAL
    Free Radic Biol Med; 2016 Sep; 98():68-77. PubMed ID: 26804254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training.
    Daugaard JR; Nielsen JN; Kristiansen S; Andersen JL; Hargreaves M; Richter EA
    Diabetes; 2000 Jul; 49(7):1092-5. PubMed ID: 10909963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impaired regeneration in calpain-3 null muscle is associated with perturbations in mTORC1 signaling and defective mitochondrial biogenesis.
    Yalvac ME; Amornvit J; Braganza C; Chen L; Hussain SA; Shontz KM; Montgomery CL; Flanigan KM; Lewis S; Sahenk Z
    Skelet Muscle; 2017 Dec; 7(1):27. PubMed ID: 29241457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR.
    Kazior Z; Willis SJ; Moberg M; Apró W; Calbet JA; Holmberg HC; Blomstrand E
    PLoS One; 2016; 11(2):e0149082. PubMed ID: 26885978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strenuous exercise-induced alterations of muscle fiber cross-sectional area and fiber-type distribution in steroid myopathy rats.
    Uchikawa K; Takahashi H; Hase K; Masakado Y; Liu M
    Am J Phys Med Rehabil; 2008 Feb; 87(2):126-33. PubMed ID: 17993993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-fiber expression and fiber-specific adaptability to short-term intense exercise training of Na+-K+-ATPase α- and β-isoforms in human skeletal muscle.
    Wyckelsma VL; McKenna MJ; Serpiello FR; Lamboley CR; Aughey RJ; Stepto NK; Bishop DJ; Murphy RM
    J Appl Physiol (1985); 2015 Mar; 118(6):699-706. PubMed ID: 25614596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance.
    Chen J; Wong HS; Leong PK; Leung HY; Chan WM; Ko KM
    Food Funct; 2017 Jul; 8(7):2425-2436. PubMed ID: 28675237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice.
    Foltz SJ; Modi JN; Melick GA; Abousaud MI; Luan J; Fortunato MJ; Beedle AM
    PLoS One; 2016; 11(1):e0147049. PubMed ID: 26751696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-fat diet induces skeletal muscle oxidative stress in a fiber type-dependent manner in rats.
    Pinho RA; Sepa-Kishi DM; Bikopoulos G; Wu MV; Uthayakumar A; Mohasses A; Hughes MC; Perry CGR; Ceddia RB
    Free Radic Biol Med; 2017 Sep; 110():381-389. PubMed ID: 28690197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation of Skeletal Muscles to Contractile Activity of Varying Duration and Intensity: The Role of PGC-1α.
    Popov DV
    Biochemistry (Mosc); 2018 Jun; 83(6):613-628. PubMed ID: 30195320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise.
    Mankowski RT; Anton SD; Buford TW; Leeuwenburgh C
    Med Sci Sports Exerc; 2015 Sep; 47(9):1857-68. PubMed ID: 25606815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of mitochondrial biogenesis in muscle by endurance exercise.
    Irrcher I; Adhihetty PJ; Joseph AM; Ljubicic V; Hood DA
    Sports Med; 2003; 33(11):783-93. PubMed ID: 12959619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined effects of whole-body vibration, resistance exercise, and vascular occlusion on skeletal muscle and performance.
    Item F; Denkinger J; Fontana P; Weber M; Boutellier U; Toigo M
    Int J Sports Med; 2011 Oct; 32(10):781-7. PubMed ID: 21870317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents.
    Abreu P; Mendes SV; Ceccatto VM; Hirabara SM
    Life Sci; 2017 Feb; 170():33-40. PubMed ID: 27888112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Similar changes in muscle fiber phenotype with differentiated consequences for rate of force development: endurance versus resistance training.
    Farup J; Sørensen H; Kjølhede T
    Hum Mov Sci; 2014 Apr; 34():109-19. PubMed ID: 24530017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.
    Liu TC; Liu G; Hu SJ; Zhu L; Yang XB; Zhang QG
    Adv Exp Med Biol; 2017; 977():419-424. PubMed ID: 28685473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skeletal muscle mitochondrial remodeling in exercise and diseases.
    Gan Z; Fu T; Kelly DP; Vega RB
    Cell Res; 2018 Oct; 28(10):969-980. PubMed ID: 30108290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.