These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27032949)

  • 21. Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering.
    Shachar M; Benishti N; Cohen S
    Biotechnol Prog; 2012; 28(6):1551-9. PubMed ID: 22961835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage.
    Gemmiti CV; Guldberg RE
    Tissue Eng; 2006 Mar; 12(3):469-79. PubMed ID: 16579680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of left ventricular stretching in model cultivations with neonatal cardiomyocytes in a whole-heart bioreactor.
    Hülsmann J; Aubin H; Wehrmann A; Lichtenberg A; Akhyari P
    Biotechnol Bioeng; 2017 May; 114(5):1107-1117. PubMed ID: 28019665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch.
    Mironov V; Kasyanov V; McAllister K; Oliver S; Sistino J; Markwald R
    J Craniofac Surg; 2003 May; 14(3):340-7. PubMed ID: 12826805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue.
    Tandon N; Taubman A; Cimetta E; Saccenti L; Vunjak-Novakovic G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6219-23. PubMed ID: 24111161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of acellular myocardial scaffolds with well-preserved cardiomyocyte lacunae, and method for applying mechanical and electrical simulation to tissue construct.
    Wang B; Williams LN; de Jongh Curry AL; Liao J
    Methods Mol Biol; 2014; 1181():189-202. PubMed ID: 25070338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications.
    Orr DE; Burg KJ
    Ann Biomed Eng; 2008 Jul; 36(7):1228-41. PubMed ID: 18438713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioreactor technology in cardiovascular tissue engineering.
    Mertsching H; Hansmann J
    Adv Biochem Eng Biotechnol; 2009; 112():29-37. PubMed ID: 19290496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a microperfusion system for the culture of bioengineered heart muscle.
    Hecker L; Khait L; Radnoti D; Birla R
    ASAIO J; 2008; 54(3):284-94. PubMed ID: 18496279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
    Khait L; Hecker L; Radnoti D; Birla RK
    Ann Biomed Eng; 2008 May; 36(5):713-25. PubMed ID: 18274906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional perfusion cultivation of human cardiac-derived progenitors facilitates their expansion while maintaining progenitor state.
    Kryukov O; Ruvinov E; Cohen S
    Tissue Eng Part C Methods; 2014 Nov; 20(11):886-94. PubMed ID: 24568665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel.
    Chiu LL; Janic K; Radisic M
    Int J Artif Organs; 2012 Apr; 35(4):237-50. PubMed ID: 22505198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioreactor Platform for Biomimetic Culture and
    Massai D; Pisani G; Isu G; Rodriguez Ruiz A; Cerino G; Galluzzi R; Pisanu A; Tonoli A; Bignardi C; Audenino AL; Marsano A; Morbiducci U
    Front Bioeng Biotechnol; 2020; 8():733. PubMed ID: 32766218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear and Compression Bioreactor for Cartilage Synthesis.
    Shahin K; Doran PM
    Methods Mol Biol; 2015; 1340():221-33. PubMed ID: 26445842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering.
    Laganà K; Moretti M; Dubini G; Raimondi MT
    Proc Inst Mech Eng H; 2008 Jul; 222(5):705-15. PubMed ID: 18756689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of electrical stimulation bioreactors for cardiac tissue engineering.
    Tandon N; Marsano A; Cannizzaro C; Voldman J; Vunjak-Novakovic G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3594-7. PubMed ID: 19163486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of mechanical stress on fibroblast-myocyte interactions in mammalian heart.
    Abramochkin DV; Lozinsky IT; Kamkin A
    J Mol Cell Cardiol; 2014 May; 70():27-36. PubMed ID: 24389344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioreactors for guiding muscle tissue growth and development.
    Dennis RG; Smith B; Philp A; Donnelly K; Baar K
    Adv Biochem Eng Biotechnol; 2009; 112():39-79. PubMed ID: 19290497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model.
    Nguyen MD; Tinney JP; Ye F; Elnakib AA; Yuan F; El-Baz A; Sethu P; Keller BB; Giridharan GA
    Anal Chem; 2015 Feb; 87(4):2107-13. PubMed ID: 25539164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical mapping of impulse propagation in engineered cardiac tissue.
    Radisic M; Fast VG; Sharifov OF; Iyer RK; Park H; Vunjak-Novakovic G
    Tissue Eng Part A; 2009 Apr; 15(4):851-60. PubMed ID: 18847360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.