These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
574 related articles for article (PubMed ID: 27033348)
1. SIS Epidemic Propagation on Hypergraphs. Bodó Á; Katona GY; Simon PL Bull Math Biol; 2016 Apr; 78(4):713-735. PubMed ID: 27033348 [TBL] [Abstract][Full Text] [Related]
2. Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis. Szabó-Solticzky A; Berthouze L; Kiss IZ; Simon PL J Math Biol; 2016 Apr; 72(5):1153-76. PubMed ID: 26063525 [TBL] [Abstract][Full Text] [Related]
3. Precise Estimates of Persistence Time for SIS Infections in Heterogeneous Populations. Clancy D Bull Math Biol; 2018 Nov; 80(11):2871-2896. PubMed ID: 30206808 [TBL] [Abstract][Full Text] [Related]
4. Random migration processes between two stochastic epidemic centers. Sazonov I; Kelbert M; Gravenor MB Math Biosci; 2016 Apr; 274():45-57. PubMed ID: 26877075 [TBL] [Abstract][Full Text] [Related]
5. Susceptible-infected-susceptible model: a comparison of N-intertwined and heterogeneous mean-field approximations. Li C; van de Bovenkamp R; Van Mieghem P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026116. PubMed ID: 23005834 [TBL] [Abstract][Full Text] [Related]
7. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate. Christen A; Maulén-Yañez MA; González-Olivares E; Curé M J Math Biol; 2018 Mar; 76(4):1005-1026. PubMed ID: 28752421 [TBL] [Abstract][Full Text] [Related]
8. Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated. Cator E; Van Mieghem P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052802. PubMed ID: 25353839 [TBL] [Abstract][Full Text] [Related]
9. An SIS epidemic model with individual variation. Pollett PK Math Biosci Eng; 2024 Mar; 21(4):5446-5455. PubMed ID: 38872543 [TBL] [Abstract][Full Text] [Related]
10. Extinction times in the subcritical stochastic SIS logistic epidemic. Brightwell G; House T; Luczak M J Math Biol; 2018 Aug; 77(2):455-493. PubMed ID: 29387919 [TBL] [Abstract][Full Text] [Related]
11. Mean-field models for non-Markovian epidemics on networks. Sherborne N; Miller JC; Blyuss KB; Kiss IZ J Math Biol; 2018 Feb; 76(3):755-778. PubMed ID: 28685365 [TBL] [Abstract][Full Text] [Related]
12. Exact Equations for SIR Epidemics on Tree Graphs. Sharkey KJ; Kiss IZ; Wilkinson RR; Simon PL Bull Math Biol; 2015 Apr; 77(4):614-45. PubMed ID: 24347252 [TBL] [Abstract][Full Text] [Related]
13. Estimating the within-household infection rate in emerging SIR epidemics among a community of households. Ball F; Shaw L J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343 [TBL] [Abstract][Full Text] [Related]
14. SIR dynamics in random networks with communities. Li J; Wang J; Jin Z J Math Biol; 2018 Oct; 77(4):1117-1151. PubMed ID: 29752517 [TBL] [Abstract][Full Text] [Related]
15. Epidemics in networks with nodal self-infection and the epidemic threshold. Van Mieghem P; Cator E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016116. PubMed ID: 23005500 [TBL] [Abstract][Full Text] [Related]
16. On the exact measure of disease spread in stochastic epidemic models. Artalejo JR; Lopez-Herrero MJ Bull Math Biol; 2013 Jul; 75(7):1031-50. PubMed ID: 23620082 [TBL] [Abstract][Full Text] [Related]
17. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase. Britton T; Juher D; Saldaña J Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576 [TBL] [Abstract][Full Text] [Related]
18. Elementary proof of convergence to the mean-field model for the SIR process. Armbruster B; Beck E J Math Biol; 2017 Aug; 75(2):327-339. PubMed ID: 28004143 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of Multi-stage Infections on Networks. Sherborne N; Blyuss KB; Kiss IZ Bull Math Biol; 2015 Oct; 77(10):1909-33. PubMed ID: 26403422 [TBL] [Abstract][Full Text] [Related]
20. Message passing and moment closure for susceptible-infected-recovered epidemics on finite networks. Wilkinson RR; Sharkey KJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022808. PubMed ID: 25353535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]