These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27033354)

  • 1. Difference between the vocalizations of two sister species of pigeons explained in dynamical terms.
    Alonso RG; Kopuchian C; Amador A; Suarez Mde L; Tubaro PL; Mindlin GB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 May; 202(5):361-70. PubMed ID: 27033354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From electromyographic activity to frequency modulation in zebra finch song.
    Döppler JF; Bush A; Goller F; Mindlin GB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):209-217. PubMed ID: 29170980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear analysis of irregular animal vocalizations.
    Tokuda I; Riede T; Neubauer J; Owren MJ; Herzel H
    J Acoust Soc Am; 2002 Jun; 111(6):2908-19. PubMed ID: 12083224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tonal vocalizations in the red wolf (Canis rufus): potential functions of nonlinear sound production.
    Schneider JN; Anderson RE
    J Acoust Soc Am; 2011 Oct; 130(4):2275-84. PubMed ID: 21973383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Structure, occurrence and functional significance of nonlinear phenomena in sounds of terrestrial mammals].
    Volodin IA; Volodina EV; Filatova OA
    Zh Obshch Biol; 2005; 66(4):346-62. PubMed ID: 16212284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis.
    Cazau D; Adam O; Aubin T; Laitman JT; Reidenberg JS
    Sci Rep; 2016 Oct; 6():31660. PubMed ID: 27721476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound production by singing humpback whales.
    Mercado E; Schneider JN; Pack AA; Herman LM
    J Acoust Soc Am; 2010 Apr; 127(4):2678-91. PubMed ID: 20370048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic signatures of sound source-tract coupling.
    Arneodo EM; Perl YS; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041920. PubMed ID: 21599213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird.
    Fee MS; Shraiman B; Pesaran B; Mitra PP
    Nature; 1998 Sep; 395(6697):67-71. PubMed ID: 12071206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying syringeal dynamics
    Rasmussen JH; Herbst CT; Elemans CPH
    J Exp Biol; 2018 Aug; 221(Pt 16):. PubMed ID: 29880637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.
    Arneodo EM; Perl YS; Goller F; Mindlin GB
    PLoS Comput Biol; 2012; 8(6):e1002546. PubMed ID: 22761555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations.
    Zollinger SA; Riede T; Suthers RA
    J Exp Biol; 2008 Jun; 211(Pt 12):1978-91. PubMed ID: 18515729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical origin of spectrally rich vocalizations in birdsong.
    Sitt JD; Amador A; Goller F; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011905. PubMed ID: 18763980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Songbirds use pulse tone register in two voices to generate low-frequency sound.
    Jensen KK; Cooper BG; Larsen ON; Goller F
    Proc Biol Sci; 2007 Nov; 274(1626):2703-10. PubMed ID: 17725979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanics and control of vocalization in a non-songbird.
    Elemans CP; Zaccarelli R; Herzel H
    J R Soc Interface; 2008 Jul; 5(24):691-703. PubMed ID: 17999946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bird song: superfast muscles control dove's trill.
    Elemans CP; Spierts IL; Müller UK; Van Leeuwen JL; Goller F
    Nature; 2004 Sep; 431(7005):146. PubMed ID: 15356620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual vocalization stimuli for investigating neural representations of species-specific vocalizations.
    DiMattina C; Wang X
    J Neurophysiol; 2006 Feb; 95(2):1244-62. PubMed ID: 16207780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilateral source acoustic interaction in a syrinx model of an oscine bird.
    Laje R; Sciamarella D; Zanella J; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011912. PubMed ID: 18351881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ biomechanics of the syrinx and sound generation in pigeons.
    Goller F; Larsen ON
    J Exp Biol; 1997 Aug; 200(Pt 16):2165-76. PubMed ID: 9286098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sender-receiver matching hypothesis: support from the peripheral coding of acoustic features in songbirds.
    Gall MD; Brierley LE; Lucas JR
    J Exp Biol; 2012 Nov; 215(Pt 21):3742-51. PubMed ID: 22855616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.