These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 27033558)
1. Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit. Zhao YJ; Wang C; Zhu X; Liu YX Sci Rep; 2016 Apr; 6():23646. PubMed ID: 27033558 [TBL] [Abstract][Full Text] [Related]
2. Engineering Purely Nonlinear Coupling between Superconducting Qubits Using a Quarton. Ye Y; Peng K; Naghiloo M; Cunningham G; O'Brien KP Phys Rev Lett; 2021 Jul; 127(5):050502. PubMed ID: 34397252 [TBL] [Abstract][Full Text] [Related]
4. Observation of entanglement between itinerant microwave photons and a superconducting qubit. Eichler C; Lang C; Fink JM; Govenius J; Filipp S; Wallraff A Phys Rev Lett; 2012 Dec; 109(24):240501. PubMed ID: 23368292 [TBL] [Abstract][Full Text] [Related]
5. Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit. Scarlino P; van Woerkom DJ; Mendes UC; Koski JV; Landig AJ; Andersen CK; Gasparinetti S; Reichl C; Wegscheider W; Ensslin K; Ihn T; Blais A; Wallraff A Nat Commun; 2019 Jul; 10(1):3011. PubMed ID: 31285437 [TBL] [Abstract][Full Text] [Related]
6. Resolving photon number states in a superconducting circuit. Schuster DI; Houck AA; Schreier JA; Wallraff A; Gambetta JM; Blais A; Frunzio L; Majer J; Johnson B; Devoret MH; Girvin SM; Schoelkopf RJ Nature; 2007 Feb; 445(7127):515-8. PubMed ID: 17268464 [TBL] [Abstract][Full Text] [Related]
7. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Hua M; Tao MJ; Deng FG Sci Rep; 2015 Mar; 5():9274. PubMed ID: 25787147 [TBL] [Abstract][Full Text] [Related]
8. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation. George RE; Senior J; Saira OP; Pekola JP; de Graaf SE; Lindström T; Pashkin YA J Low Temp Phys; 2017; 189(1):60-75. PubMed ID: 32025044 [TBL] [Abstract][Full Text] [Related]
9. A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED. Yang CP J Phys Condens Matter; 2011 Jun; 23(22):225702. PubMed ID: 21593555 [TBL] [Abstract][Full Text] [Related]
10. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Chiorescu I; Bertet P; Semba K; Nakamura Y; Harmans CJ; Mooij JE Nature; 2004 Sep; 431(7005):159-62. PubMed ID: 15356624 [TBL] [Abstract][Full Text] [Related]
11. Deterministic entanglement of photons in two superconducting microwave resonators. Wang H; Mariantoni M; Bialczak RC; Lenander M; Lucero E; Neeley M; O'Connell AD; Sank D; Weides M; Wenner J; Yamamoto T; Yin Y; Zhao J; Martinis JM; Cleland AN Phys Rev Lett; 2011 Feb; 106(6):060401. PubMed ID: 21405445 [TBL] [Abstract][Full Text] [Related]
12. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625 [TBL] [Abstract][Full Text] [Related]
13. One-Photon Solutions to the Multiqubit Multimode Quantum Rabi Model for Fast W-State Generation. Peng J; Zheng J; Yu J; Tang P; Barrios GA; Zhong J; Solano E; Albarrán-Arriagada F; Lamata L Phys Rev Lett; 2021 Jul; 127(4):043604. PubMed ID: 34355937 [TBL] [Abstract][Full Text] [Related]
14. Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit. Bøttcher CGL; Harvey SP; Fallahi S; Gardner GC; Manfra MJ; Vool U; Bartlett SD; Yacoby A Nat Commun; 2022 Aug; 13(1):4773. PubMed ID: 35970821 [TBL] [Abstract][Full Text] [Related]
15. A graph-theoretical representation of multiphoton resonance processes in superconducting quantum circuits. Jooya HZ; Reihani K; Chu SI Sci Rep; 2016 Nov; 6():37544. PubMed ID: 27869230 [TBL] [Abstract][Full Text] [Related]
16. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings. Beaudoin F; Lachance-Quirion D; Coish WA; Pioro-Ladrière M Nanotechnology; 2016 Nov; 27(46):464003. PubMed ID: 27749276 [TBL] [Abstract][Full Text] [Related]
17. Strong coupling between a microwave photon and a singlet-triplet qubit. Ungerer JH; Pally A; Kononov A; Lehmann S; Ridderbos J; Potts PP; Thelander C; Dick KA; Maisi VF; Scarlino P; Baumgartner A; Schönenberger C Nat Commun; 2024 Feb; 15(1):1068. PubMed ID: 38316779 [TBL] [Abstract][Full Text] [Related]
18. A scanning transmon qubit for strong coupling circuit quantum electrodynamics. Shanks WE; Underwood DL; Houck AA Nat Commun; 2013; 4():1991. PubMed ID: 23744062 [TBL] [Abstract][Full Text] [Related]
19. Arbitrary control of entanglement between two superconducting resonators. Strauch FW; Jacobs K; Simmonds RW Phys Rev Lett; 2010 Jul; 105(5):050501. PubMed ID: 20867901 [TBL] [Abstract][Full Text] [Related]
20. Circuit QED: single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n - 1 microwave photonic qubits. Ye B; Zheng ZF; Zhang Y; Yang CP Opt Express; 2018 Nov; 26(23):30689-30702. PubMed ID: 30469962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]