These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27034032)

  • 1. FOURIER TRANSFORM INFRARED MICROSPECTROSCOPY AS A TOOL TO IDENTIFY MACROALGAL PROPAGULES(1).
    Bellgrove A; Kihara H; Iwata A; Aoki MN; Heraud P
    J Phycol; 2009 Jun; 45(3):560-70. PubMed ID: 27034032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maintenance of Complex Life Cycles Via Cryptic Differences In The Ecophysiology Of Haploid And Diploid Spores Of An Isomorphic Red Alga
    Bellgrove A; Nakaya F; Serisawa Y; Matsuyama-Serisawa K; Kagami Y; Jones PM; Suzuki H; Kawano S; Aoki MN
    J Phycol; 2020 Feb; 56(1):159-169. PubMed ID: 31595519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning.
    Dell'Anna R; Lazzeri P; Frisanco M; Monti F; Malvezzi Campeggi F; Gottardini E; Bersani M
    Anal Bioanal Chem; 2009 Jul; 394(5):1443-52. PubMed ID: 19396429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To gel or not to gel: differential expression of carrageenan-related genes between the gametophyte and tetasporophyte life cycle stages of the red alga Chondrus crispus.
    Lipinska AP; Collén J; Krueger-Hadfield SA; Mora T; Ficko-Blean E
    Sci Rep; 2020 Jul; 10(1):11498. PubMed ID: 32661246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic profiling of keloid scars using FT-IR microspectroscopy reveals a unique spectral signature.
    Hollywood KA; Maatje M; Shadi IT; Henderson A; McGrouther DA; Goodacre R; Bayat A
    Arch Dermatol Res; 2010 Dec; 302(10):705-15. PubMed ID: 20700600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared microspectroscopy of endocarditis vegetation.
    Batard E; Jamme F; Boutoille D; Jacqueline C; Caillon J; Potel G; Dumas P
    Appl Spectrosc; 2010 Aug; 64(8):901-6. PubMed ID: 20719053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared microspectroscopy as a new tool for nematode studies.
    Ami D; Natalello A; Zullini A; Doglia SM
    FEBS Lett; 2004 Oct; 576(3):297-300. PubMed ID: 15498551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of haploid and diploid fertilities in Gracilaria chilensis affect ploidy ratio.
    Vieira VMNCS; Engelen AH; Huanel OR; Guillemin ML
    BMC Evol Biol; 2018 Dec; 18(1):183. PubMed ID: 30518318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species.
    Janbu AO; Møretrø T; Bertrand D; Kohler A
    FEMS Microbiol Lett; 2008 Jan; 278(2):164-70. PubMed ID: 18053065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid species and strain differentiation of non-tubercoulous mycobacteria by Fourier-Transform Infrared microspectroscopy.
    Rebuffo-Scheer CA; Kirschner C; Staemmler M; Naumann D
    J Microbiol Methods; 2007 Feb; 68(2):282-90. PubMed ID: 17055090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrageenophytes of occidental Portuguese coast: 1-spectroscopic analysis in eight carrageenophytes from Buarcos bay.
    Pereira L; Mesquita JF
    Biomol Eng; 2003 Jul; 20(4-6):217-22. PubMed ID: 12919800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended Multiplicative Signal Correction for Infrared Microspectroscopy of Heterogeneous Samples with Cylindrical Domains.
    Rasskazov IL; Singh R; Carney PS; Bhargava R
    Appl Spectrosc; 2019 Aug; 73(8):859-869. PubMed ID: 31149835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure.
    Zimmermann B; Bağcıoğlu M; Sandt C; Kohler A
    Planta; 2015 Nov; 242(5):1237-50. PubMed ID: 26289829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Allergenic Pollen by FTIR Microspectroscopy.
    Zimmerman B; Tafintseva V; Bağcıoğlu M; Høegh Berdahl M; Kohler A
    Anal Chem; 2016 Jan; 88(1):803-11. PubMed ID: 26599685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages of the use of SR-FT-IR microspectroscopy: applications to cultural heritage.
    Salvadó N; Butí S; Tobin MJ; Pantos E; Prag AJ; Pradell T
    Anal Chem; 2005 Jun; 77(11):3444-51. PubMed ID: 15924374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection.
    Volery P; Besson R; Schaffer-Lequart C
    J Agric Food Chem; 2004 Dec; 52(25):7457-63. PubMed ID: 15675788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and characterization of a phage-display recombinant antibody against carrageenans: evidence for the recognition of a secondary structure of carrageenan chains present in red algae tissues.
    Liners F; Helbert W; Van Cutsem P
    Glycobiology; 2005 Sep; 15(9):849-60. PubMed ID: 15872149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of Ganoderma lucidum spores by FTIR microspectroscopy.
    Wang X; Chen X; Qi Z; Liu X; Li W; Wang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():285-9. PubMed ID: 22381804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The immunochemistry of lambda-type carrageenans from certain red algae.
    DiNinno V; McCandless EL
    Carbohydr Res; 1978 Nov; 67(1):235-41. PubMed ID: 568513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier transform infrared and Raman microspectroscopy of materials in tissue.
    Kalasinsky VF; Johnson FB; Ferwerda R
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):141-4. PubMed ID: 9551646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.