BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 27034152)

  • 1. Intraoperative assessment of ossicular fixation.
    Peacock J; Dirckx J; von Unge M
    Hear Res; 2016 Oct; 340():99-106. PubMed ID: 27034152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards quantitative diagnosis of ossicular fixation: Measurement of stapes fixations using magnetically driven ossicles in human temporal bones.
    Peacock J; Dirckx J; von Unge M
    Acta Otolaryngol; 2015 Sep; 135(9):880-5. PubMed ID: 25956182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically driven middle ear ossicles with laser vibrometry as a new diagnostic tool to quantify ossicular fixation.
    Peacock J; Dirckx J; von Unge M
    Acta Otolaryngol; 2014 Apr; 134(4):352-7. PubMed ID: 24628334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental ossicular fixations and the middle ear's response to sound: evidence for a flexible ossicular chain.
    Nakajima HH; Ravicz ME; Merchant SN; Peake WT; Rosowski JJ
    Hear Res; 2005 Jun; 204(1-2):60-77. PubMed ID: 15925192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane.
    Rosowski JJ; Mehta RP; Merchant SN
    Otol Neurotol; 2003 Mar; 24(2):165-75. PubMed ID: 12621328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled exploration of the effects of conductive hearing loss on wideband acoustic immittance in human cadaveric preparations.
    Merchant GR; Merchant SN; Rosowski JJ; Nakajima HH
    Hear Res; 2016 Nov; 341():19-30. PubMed ID: 27496538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforced active middle ear implant fixation in incus vibroplasty.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Hagen R; Gummer AW; Schraven SP
    Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Artificial Fixation of the Incus and Malleus With Minimally Invasive Intraoperative Laser Vibrometry (MIVIB) in a Temporal Bone Model.
    Gladiné K; Wales J; Silvola J; Muyshondt PGG; Topsakal V; Van De Heyning P; Dirckx JJJ; von Unge M
    Otol Neurotol; 2020 Jan; 41(1):45-51. PubMed ID: 31664003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Method of ossicular chain valuation. Experimental measurement and clinical application].
    Sokołowski J; Niemczyk K; Bartoszewicz R; Morawski K; Bruzgielewicz A
    Otolaryngol Pol; 2009; 63(5):432-6. PubMed ID: 20169909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a cement incus replacement prosthesis in a temporal bone model.
    Asai M; Heiland KE; Huber AM; Goode RL
    Acta Otolaryngol; 1999; 119(5):573-6. PubMed ID: 10478598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Techniques to improve the efficiency of a middle ear implant: effect of different methods of coupling to the ossicular chain.
    Devèze A; Koka K; Tringali S; Jenkins HA; Tollin DJ
    Otol Neurotol; 2013 Jan; 34(1):158-66. PubMed ID: 23196747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optimal Partial Ossicular Prosthesis Should Connect Both to the Tympanic Membrane and Malleus: A Temporal Bone Study Using Laser Doppler Vibrometry.
    Niklasson A; Gladiné K; Rönnblom A; von Unge M; Dirckx J; Tano K
    Otol Neurotol; 2018 Mar; 39(3):333-339. PubMed ID: 29342039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Audiometric and Mechanical Effects of Partial Ossicular Discontinuity.
    Farahmand RB; Merchant GR; Lookabaugh SA; Röösli C; Ulku CH; McKenna MJ; de Venecia RK; Halpin CF; Rosowski JJ; Nakajima HH
    Ear Hear; 2016; 37(2):206-15. PubMed ID: 26510125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimally invasive laser vibrometry (MIVIB) with a floating mass transducer - A new method for objective evaluation of the middle ear demonstrated on stapes fixation.
    Wales J; Gladiné K; Van de Heyning P; Topsakal V; von Unge M; Dirckx J
    Hear Res; 2018 Jan; 357():46-53. PubMed ID: 29190487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Surgical anatomy of the tympano-ossicular system].
    Ars B
    Acta Otorhinolaryngol Belg; 1977; 31(1):50-68. PubMed ID: 906825
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.