These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27034315)

  • 1. Turbulence in blood damage modeling.
    Goubergrits L; Osman J; Mevert R; Kertzscher U; Pöthkow K; Hege HC
    Int J Artif Organs; 2016 Jun; 39(4):160-5. PubMed ID: 27034315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of turbulent viscous shear stress on red blood cell hemolysis.
    Yen JH; Chen SF; Chern MK; Lu PC
    J Artif Organs; 2014 Jun; 17(2):178-85. PubMed ID: 24619800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Heart Valve Dis; 2002 May; 11(3):392-401. PubMed ID: 12056734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Reynolds stresses within the Penn State left ventricular assist device.
    Baldwin JT; Deutsch S; Geselowitz DB; Tarbell JM
    ASAIO Trans; 1990; 36(3):M274-8. PubMed ID: 2252676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of superhydrophobicity on the fluid dynamics of a bileaflet mechanical heart valve.
    Hatoum H; Vallabhuneni S; Kota AK; Bark DL; Popat KC; Dasi LP
    J Mech Behav Biomed Mater; 2020 Oct; 110():103895. PubMed ID: 32957201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of turbulence modelling on the assessment of platelet activation.
    Bozzi S; Dominissini D; Redaelli A; Passoni G
    J Biomech; 2021 Nov; 128():110704. PubMed ID: 34482226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.
    Tabe R; Ghalichi F; Hossainpour S; Ghasemzadeh K
    Biomed Mater Eng; 2016 Aug; 27(2-3):119-29. PubMed ID: 27567769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principal stress analysis in LDA measurement of the flow field downstream of 19-mm Sorin Bicarbon heart valve.
    Barbaro V; Grigioni M; Daniele C; D'Avenio G
    Technol Health Care; 1998 Nov; 6(4):259-70. PubMed ID: 9924953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device.
    Torner B; Konnigk L; Wurm FH
    Int J Artif Organs; 2019 Dec; 42(12):735-747. PubMed ID: 31328604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vivo turbulent stresses of bileaflet prosthesis leakage jets.
    Travis BR; Christensen TD; Smerup M; Olsen MS; Hasenkam JM; Nygaard H
    J Heart Valve Dis; 2005 Sep; 14(5):644-56. PubMed ID: 16245504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.
    Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB
    Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turbulent stresses in the region of a Hancock porcine bioprosthetic aortic valve.
    Walburn FJ; Sabbah HN; Stein PD
    J Biomech Eng; 1985 Aug; 107(3):200-5. PubMed ID: 4046560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Biomech; 2002 Dec; 35(12):1613-22. PubMed ID: 12445614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
    Ge L; Dasi LP; Sotiropoulos F; Yoganathan AP
    Ann Biomed Eng; 2008 Feb; 36(2):276-97. PubMed ID: 18049902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow.
    Lu PC; Lai HC; Liu JS
    J Biomech; 2001 Oct; 34(10):1361-4. PubMed ID: 11522317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Reynolds Shear Stress Level for Hemolysis.
    Jhun CS; Stauffer MA; Reibson JD; Yeager EE; Newswanger RK; Taylor JO; Manning KB; Weiss WJ; Rosenberg G
    ASAIO J; 2018; 64(1):63-69. PubMed ID: 28661910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage.
    Jones SA
    Ann Biomed Eng; 1995; 23(1):21-8. PubMed ID: 7762879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.